search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
SECTION TITLE


MOTORS, DRIVES & CONTROLS


efficiency, such as battery powered devices, a coreless brush DC motor can be advantageous. Control devices can also be added, such as an encoder for high-resolution positioning feedback or a gearbox for optimised torque performance. Designing the optimal motor assembly means understanding the application’s power demand as well as the motor’s power generation. Te desired output force and linear speed vary depending on the application’s requirements. Power is generated by the motor’s torque and rotational speed, and it can be calculated by using the expected output power and by taking into account motor efficiency and the lead screw parameter, including the efficiency and pitch.


REAL-WORLD EXAMPLES Now, let’s take an example with the development of a laboratory medical device for low volume liquid transfer, a single motor package limited to a maximum diameter of 20mm controls a multi-pipette channel. Te filling stage must take less than 2.5 seconds and the pipettes then travel 50mm in 4 seconds where they are emptied in 30 sub-steps. Te application requires a high-resolution system and a good repeatability to consistently provide the same amount of liquid for each sub-step. For this kind of application, a standard digital linear motor with a lead screw will usually fulfil requirements with no special development necessary, beneficial to keep costs down. A can stack stepper motor enables pipette filling control as a result of the multi-step resolution over liquid delivery into sub-volumes, and thanks to an optimised ball bearing assembly,


Motor and lead screw example


Ball screw example


the axial play is removed, ensuring high repeatability.


BATTERY-POWERED MEDICAL DEVICE In an alternative application, a recent example of a battery-powered medical device handled by a doctor during an operation demands efficient power usage. It also has to be lightweight and compact, requiring a solution with a maximum diameter of just 13mm and for this application, coreless brush DC motors ensure high efficiency. For size optimisation, the mini motor should also be paired with a gearbox. For the geared motor selection, the engineer will take in account the duty cycle and in this case the medical device will be used over several minutes in continuous duty. To determine the required input power (torque and speed) generated by the motor, some calculations are necessary. First the conversion of the linear motion (force and linear speed) requested by the application into rotative motion (torque and rotational speed). Tis depends


on the lead screw parameters (pitch and efficiency). To know the necessary power at the motor level, you will need to consider the ratio and efficiency of the gearbox. To ensure that the motor is powerful enough in continuous use, the required motor torque should be lower than the rated torque specified by the manufacturer. When the motor and gearbox demands have been ascertained, the power requirement and efficiency of the solution can be calculated. Supporting linear motion application


design, Portescap can support engineers with standard and customised solutions. Defining the technical requirements for the application, it’s vital that the miniature motor is correctly specified and sized to ensure optimum integration and consequently, the application’s maximum performance.


Clémence Muron is an application engineer at Portescap. www.portescap.com


48 www.engineerlive.com


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52