This page contains a Flash digital edition of a book.
Zinc is capable of being cast in small complex shapes with a fi ne surface fi nish, making the material ideal for toy cars.


that were impossible until recently. This capability should be uti- lized only as necessary to achieve performance or economic advan- tages. Uniform wall thicknesses are otherwise preferred.


2. Intersections of features, such as walls, ribs and gussets, should blend with transition sections and generous radii. This practice promotes metal flow and structural integrity and rarely creates a con- flict between casting requirements and product integrity.


3. Draft angles may be minimized where metal content is critical, such as thin sections oriented


parallel to die draw. Casting to zero draft may be specified in some cases to eliminate finish machining operations. These capabilities may be utilized as necessary to gain an economic advantage or to reduce weight. In all other cases, standard draft must be specified to facilitate ejection from the die and reduce die maintenance.


4. Sharp exterior corners can be spec- ified on appearance surfaces when crisp styling features are desired. Otherwise, sharp corners should be broken with radii or chambers to reduce die maintenance.


5. Undercuts should be avoided Table 2. Physical and Mechanical Properties of Zinc Pressure Diecasting Alloys


Physical Property Density (lb./cu. in.)


Solidifi cation Shrinkage (%) Solidifi cation Temp. Range (F) Thermal Expansion (in./in. –F)


Specifi c Heat Capacity (btu/lb.-F) Specifi c Heat Capacity (btu/cu. in.-F) Electrical Conductivity (%IACS) Electrical Resitivity (Micro ohm-in.) Ultimate Tensile Strength (ksi) Yield Strength (ksi) Elongation (%)


Hardness (Brinell-500 kg) Shear Strength (ksi)


Compressive Strength (0.1% offset) (ksi)


Impact Energy (unnotched bar 0.25 in. x 0.25 in.) (J) Fatigue Strength (5x108 cycles) (ksi)


2015 CASTING SOURCE DIRECTORY 2


0.24 1.25


734-715 15.2x10-6 0.1


0.024 25 —


48 — 2


98 46 93


6.8 8.5


3


0.24 1.17


728-719 15.2x10-6 0.1


0.024 27


2.5 35 — 16 72 31


60


55.6 6.9


5


0.24 1.17


727-717 15.2x10-6 0.1


0.024 26


2.6 39 — 13


80 38 87


54.2 8.2


Source: Engineering Properties of Zinc Alloys, International Lead Zinc Research Organization Inc. METAL CASTING DESIGN & PURCHASING 43


Alloy Designation 7


0.24 1.17


728-717 15.2x10-6 0.1


0.024 27 — 41 — 18


67 31


60


55.6 6.8


ZA-8 0.227


1.1


759-707 12.9x10-6 0.104 0.024 27.7 2.4 43 32 20 91


33 25 17 15


ZA-12 0.218


1.25


810-710 13.4x10-6 0.107 0.023 28.3 2.4 45 35 10 91


34 27 19 —


ZA-27 0.181


1.25


903-708 14.4x10-6 0.125 0.023 29.7 2.6 52 46


3.0 100 37 37


2.2 21


whenever possible because they require additional machin- ing operations or additional die members, such as retractable core slides. When core slides are used, the design should allow them to be located in the die parting plane.


6. Dimensions with critical toler- ances should relate to only one die member—either the ejector die half or the cover die half. Critical tolerances across the parting line are difficult to maintain. ■


This article was adapted from various bulletins and The Zinc Die Casting Process, published by the North Ameri- can Die Casting Association (NADCA).


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172