This page contains a Flash digital edition of a book.
BEAM DELIVERY


for acceleration, and strong brakes for deceleration, and all of these elements must be precise. Likewise, every aspect of the laser scanner’s properties, from the spindle and mirrors, to the high-precision position detecting system, needs to be handled correctly if the throughput is to be good enough to fulfil the user’s needs. Raylase, with headquarters in Wessling,


Germany, understands this critical need for precision. Te company develops deflection units, which comprise a galvo, mirrors, controlling unit and important electronic components, and these units are used to bring


www.lasersystemseurope.com | @lasersystemsmag


the laser spot directly to where users need it to be. Raylase products can work with a spot size of


around 60µm in a field of 1 x 1m, and at a speed of more than 10m/s. According to Dr Philipp Schön, CSO at Raylase, other technologies, such as micro-electro-mechanical systems (MEMS), have some benefits, but today they cannot reach the required standard for beam power and precision. Te company is looking at this technology, but believes that scanning heads – which enable the laser’s power to be focused and harnessed down to very specific points – will continue to be one of the most important


elements for many applications, for at least the next 10 to 20 years. In terms of the most promising scanning


technology, Scanlab’s Hofner added: ‘We must first decide exactly which scanning technologies to consider in detail. Do we differentiate among galvo-based systems, polygon scanners and piezo-electronic or acoustic-electronic systems? We still see galvo-driven systems as the most promising and suitable solution because of their speed, precision and ability to handle high laser powers. However, other hybrid systems will sometimes gain importance, such as the hybrid polygon scanner we developed for USP lasers.’


ISSUE 29 • WINTER 2015 LASER SYSTEMS EUROPE 27


Dmitry Kalinovsky/Shutterstock.com


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40