This page contains a Flash digital edition of a book.
Technical - Soil Biology


Seaweed extracts act as biostimulants on the microbes in the soil because of the carbon and carbohydrate content and diversity of nutrients that act as a microbial food source. Generally, potassium hydroxide extracted seaweed, which has a higher organic content than cold pressed solutions, is best for soil microbe growth and was shown to be a better biostimulant for bacterial and fungal growth than fish hydrolysate or complex sugars see photo 3. So, while seaweed itself does not make all the improvements attributed to it, the increase in beneficial soil biology does.


Seaweed extracts act as a biostimulant


Cold pressed seaweeds with a smaller molecular structure are more readily absorbed by the plant and work well on the plant, mainly due to the presence of plant hormones: auxins, cytokinins, gibberellins. Auxins are responsible for elongational growth of plant tissues, cell division, plant movements and plant aging; cytokinins help transport nutrients, regulate cell division and inhibit ageing of plant tissues, whilst gibberellins regulate growth and stem elongation, germination, dormancy and seed production and germination.


Amino Acids


There are twenty amino acids that form the building blocks of protein. In good conditions, plants can usually produce all the amino acids required but, when under stress due low cutting height, poor light and drought, photosynthesis is inhibited and amino acid production reduced at a time when more is needed. Amino acids tend to give the best results for turfgrass, applied during the early spring when the plant finds it hard to produce the proteins needed to start growth after the winter, and during times of heat and drought stress in summer. Amino acids are also a source of nitrogen.


Molasses Fish hydrolysate comes into its own when broken down “


Molasses is an extract of sugar cane and is available in many forms, but when used on turf grass it is usually best to use the complex carbohydrates produced after the simple sugars and salts have been extracted in the production process.


Fish hydrolysate is basically the parts of the fish not used for human


consumption, with the bones degraded by enzymes, though for turf use products that do not smell of fish should be used


Its primary function as a biostimulant is a food source providing carbon, sugars and carbohydrates for soil microbes, particularly bacteria. Most molasses based products also contain a quantity of trace elements which are also used by soil microbes that require trace minerals to act as catalysts to produce enzymes that make nutrient available to plants.


Molasses also works as a chelating agent to convert the soil’s tied-up nutrients into a form that is easily available to plants. Chelated minerals can be absorbed directly into the plant, so it is a good idea to add a complex carbohydrate and fulvic acid to liquid inorganic fertilisers to improve fertiliser uptake and efficiency and help the nutrient remain available and stable in the soil.


Molasses and concentrated molasses solubles give best results when applied in spring to get needed carbohydrate


132 I PC DECEMBER/JANUARY 2016


into the plant and as a plant nutrient and soil microbe biostimulant in summer.


Care should be taken when applying it in autumn, or at times of high disease pressure because, if applied onto newly active fusarium or other diseases, it may be used as a food source by the fusarium before the beneficial microbes can use it for their own growth.


Fish Hydrolysate


Fish hydrolysate is basically the parts of the fish not used for human consumption, with the bones degraded by enzymes, though for turf use products that do not smell of fish should be used. Whilst fish hydrolysate contains NPK when used in small quantities as a biostimulant, the nutrient content is negligible. It is as a microbial feed that it comes into its own and, when broken down, its high protein content is good for increasing protein in the plant in times of stress.


Fish Hydrolysate is another good cool season growth promoter that can be used through out the growing season.


Oxygen


The above compounds are the base raw materials for most biostimulants, and most of the products available to turf managers contain one or more of these products. But it is important to remember that all beneficial soil microbe and rootzone plant growth promotion takes place in aerobic conditions, which means that oxygen is the best biostimulant. Frequent aeration with microtines or sarrell rollers is essential for any biostimulant to work on a frequently compacted rootzone. However, there are now liquid products available that can be sprayed over the surface to release oxygen atoms to support even microbial metabolism and, in my next article, I will look at how soil microbes, biostimulants and frequent solid tine aeration may end the need for aggressive hollow coring and thatch removal.


Hopefully, this article will help managers to use the correct biostimulant to achieve the desired results. Biostimulant use is a very well researched topic and there is a wealth of information available for further study. Knowing which biostimulant to use, and when to apply it, can really improve conditions and reduce costs by improving nutrient and oxygen availability and uptake, disease resistance, soil friability and water retention.


Symbio is dedicated to researching solutions to restoring the natural biological activity in soils and growing media essential to ensure the long term sustainability of food production and amenity plant resources for the world’s increasing population.


www.symbio.co.uk


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156