This page contains a Flash digital edition of a book.
RESEARCH


SPONSORED CONTENT


Environmental Monitoring: An Evolving Process for Today’s Evolving Production


John Bray


Scientific Content Contributor That’s Nice LLC/Nice Insight


As pharmaceutical manufacturing becomes increasingly globalized, with companies engaging both contract development and manufacturing organizations (CDMOs), as well as contract research organizations (CROs) in multiple countries, contamination precautions are increasingly important. Biopharmaceuticals have also continued to grow in number and significance, further highlighting contamination concerns. This is especially due to the heightened need for aseptic conditions while processing these drugs. In response, the industry is looking for effective ways to decrease contamination. In fact, according to the 2016 Nice Insight Pharmaceutical Equipment Buying Trends Survey, 69% of respondents expressed interest in purchasing cleanroom equipment and systems.1 However, the sterility of processes and equipment is only part of the equation as the environment at large also contributes to contamination.


Each of the three major options for aseptic processing - human access cleanrooms, restricted-access barrier systems (RABS) and isolation technology (isolators) - are often used in combination. All rely heavily on the environment in which it exists.2


In a perfect world, these systems


would offer the same aseptic conditions in every situation, but the world is far from perfect. With microbial contaminants found in the air, on surfaces, and on human operators (including gowned operators), biocontamination is a serious threat to the sterility of every process, facility and product - with the potential to present catastrophic risk to companies and patients alike. Even with the best aseptic processing facilities in place, environmental monitoring (EM) helps ensure continued performance of these systems. EM offers additional peace of mind while meeting FDA requirements for sterile process validation documentation. This is not to say, however, that EM should be the primary line of defense.


Considerations When Selecting Environmental Monitoring Systems


When in the earliest stages of selecting an EM system or related components, Tony Antrum, Associate Director, Global Product Manager Environmental Monitoring at Merck, notes that the reputation and honesty of every manufacturer/supplier should be considered from


the start. In a September 2016 webinar, Environmental Monitoring in Isolators and RABS, Antrum continues by recommending that, before anything else, all statements or claims a supplier makes about a product or service should be backed up with documentation.3


This seemingly


simple notion can become important should issues or failures arise and, with this baseline established, specific performance and service requirements can be evaluated with greater confidence.


ISO 14698, “Cleanrooms and associated controlled environments, Biocontamination control,” addresses the basic principals and method- ologies for monitoring cleanroom technology for biocontamination. For example, the biological and physical recovery rates in a reliable air monitoring system should be tested in accordance with Part 1 (“General Principals and Methods”), Annex B (“Guidance on Validating Air Samplers”) of this ISO standard.3


The collection of physical and


biological samples should also be extremely efficient for both small and large organisms, as even one particle can contaminate a large lot.3 However, in addition to nonviable and airborne viable particulates in active and passive air, comprehensive monitoring should include airflow and pressure differentials, temperature, humidity and microbial components on surfaces, equipment and/or personnel.4


To ensure that


all elements are monitored correctly over time, systems should also provide a detailed activity report.3


To achieve compliance to either the most current European Union GMPs Annex 1 (2008) or FDA GMP guidelines (2004), EM must assess all of the previously listed elements. The disinfection process must also be clearly understood and outlined.4


Though compliance requires comprehensive


monitoring and effectiveness, the equipment and processes should also be evaluated to ensure a seamless transition into existing - and future - facility hardware and systems.


For example, every monitoring instrument should offer laboratory information management system (LIMS) connectivity as a quality isolator instrument (air sampler or otherwise) and should not fail, or require regular replacement, in the next two to five years. Features such as LIMS connectivity are important even if not currently in place. Future facility growth may require such a system if it is not already required.3


Pharmaceutical Outsourcing | 40 | November/December 2016


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54