Page 73 of 93
Previous Page     Next Page        Smaller fonts | Larger fonts     Go back to the flash version

A team of researchers at the University of Pennsylvania has found a way to generate a kind of “structural color” that has the added benefit of another trait of butterfly wings: super-hydrophobicity, or the ability to strongly repel water. The research was led by Shu Yang, associate professor in the Department of Materials Science and Engineering at Penn’s School of Engineering and Applied Science.

Jie Li, Guanquan Liang, Xuelian Zhu, Shu Yang: Exploiting Nanoroughness on Holographically Patterned Three-Dimensional Photonic Crystals, In: Advanced Functional Materials, Volume 22, Issue 14, Pages 2980-2986, July 24, 2012, DOI: 10.1002/adfm.201200013: http://dx.doi.org/10.1002/adfm.201200013

A critical review in Chemical Society Reviews: Yuanjin Zhao, Zhuoying Xie, Hongcheng Gu, Cun Zhu and Zhongze Gu: Bio-inspired variable structural color mate- rials, In: Chemical Society Reviews, Vol. 41, Issue 8, 2012, Pages 3297-3317, DOI: 10.1039/C2CS15267C: http://dx.doi.org/10.1039/C2CS15267C

Oregon State University (OSU), USA, present the first report of resistive switching in zinc-tin-oxide. The researchers at OSU have confirmed that zinc tin oxide has significant potential for use in this field, and could provide a new, transparent technology where computer memory is based on resistance, instead of an electron charge. This resistive random access memory, or RRAM, is referred to by some researchers as a “memristor.” Products using this approach could become even smaller, faster and cheaper than the silicon transistors that have revolutionized modern electronics – and transparent as well.

Santosh Murali, Jaana S. Rajachidambaram, Seung- Yeol Han, Chih-Hung Chang, Gregory S. Herman, John F. Conley Jr.: Resistive switching in zinc-tin-oxide, In: Solid-State Electronics, July 30, 2012, DOI:10.1016/j. sse.2012.06.016:

http://dx.doi.org/10.1016/j.sse.2012.06.016

A research team at the University of Delaware (US) studied paramagnetic colloids while periodically applying an external magnetic field at different intervals. With just the right frequency and field strength, the team was able to watch the particles transition from a random, solid like material into highly organized crystalline structures or lattices.

James W. Swan, Paula A. Vasquez, Peggy A. Whitson, E. Michael Fincke, Koichi Wakata, Sandra H. Magnus, Frank De Winne, Michael R. Barratt, Juan H. Agui, Ro- bert D. Green, Nancy R. Hall, Donna Y. Bohman, Charles T. Bunnell, Alice P. Gast, and Eric M. Furst: Multi-scale kinetics of a field-directed colloidal phase transition, In: PNAS Early Edition, September 17, 2012, DOI:10.1073/ pnas.1206915109:

http://dx.doi.org/10.1073/pnas.1206915109

Previous arrowPrevious Page     Next PageNext arrow        Smaller fonts | Larger fonts     Go back to the flash version
1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  12  |  13  |  14  |  15  |  16  |  17  |  18  |  19  |  20  |  21  |  22  |  23  |  24  |  25  |  26  |  27  |  28  |  29  |  30  |  31  |  32  |  33  |  34  |  35  |  36  |  37  |  38  |  39  |  40  |  41  |  42  |  43  |  44  |  45  |  46  |  47  |  48  |  49  |  50  |  51  |  52  |  53  |  54  |  55  |  56  |  57  |  58  |  59  |  60  |  61  |  62  |  63  |  64  |  65  |  66  |  67  |  68  |  69  |  70  |  71  |  72  |  73  |  74  |  75  |  76  |  77  |  78  |  79  |  80  |  81  |  82  |  83  |  84  |  85  |  86  |  87  |  88  |  89  |  90  |  91  |  92  |  93