Page 72 of 93
Previous Page     Next Page        Smaller fonts | Larger fonts     Go back to the flash version

Engineers at Oregon State University have made a breakthrough in the performance of microbial fuel cells that can produce electricity directly from wastewater. The new technology developed at OSU can now produce 10 to 50 more times the electricity, per volume, than most other approaches using microbial fuel cells, and 100 times more electricity than some.

Yanzhen Fan, Sun-Kee Han and Hong Liu: Improved performance of CEA microbial fuel cells with increased reactor size, In: Energy & Environmental Science, Vol. 5, Issue 8, 2012, June 13, 2012, Pages 8273-8280, DOI:10.1039/ C2EE21964F:

http://dx.doi.org/10.1039/C2EE21964F

A research group including Hokkaido University, NIMS, etc., succeeded in developing a novel alloy catalyst in which the platinum atoms and ruthenium atoms that contribute to improved efficiency in residential-use fuel cells are perfectly intermixed.

The theoretical and experimental framework of a new coherent diffraction strain imaging approach was developed in the Center for Nanoscale Materials‘ X-Ray Microscopy Group in collaboration with Argonne‘s Materials Science Division, together with users from IBM. Nanofocused X-ray Bragg projection ptychography creates a tool to efficiently image strain fields with unperturbed boundary conditions in technologically and scientifically relevant energy systems. This new technique is capable of imaging lattice distortions in thin films nonde- structively at spatial resolutions of <20 nm using coherent nanofocused hard X-rays. This work marks a significant step forward in the development of non-destructive coherent X-ray diffraction imaging techniques for the study of nanoscale lattice features in real materials under real conditions.

Figure: Residential-use solid polymer-type fuel cell system (polymer electrolyte fuel cell: PEFC), and an enlarged diagram of the developed catalyst (lower left). http://www.nims.go.jp/

(Top) Focused beam coherent X-ray nanodiffraction patterns collected from a SiGe-on-SOI prototype device edge and (middle and bottom) projected strain field reconstructed by ptychographic methods. © ANL

 

S. O. Hruszkewycz et al.: Quantitative nanoscale imaging of lattice distortions in epitaxial semiconductor heterostructures using nanofocused X-ray Bragg projection ptychography, In: Nano Letters, Vol. 12, Issue 10, October 10, 2012, Pages 5148-5154, DOI: 10.1021/nl303201w:http://dx.doi.org/10.1021/nl303201w

http://nano.anl.gov/research/xray.html

 

Previous arrowPrevious Page     Next PageNext arrow        Smaller fonts | Larger fonts     Go back to the flash version
1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  12  |  13  |  14  |  15  |  16  |  17  |  18  |  19  |  20  |  21  |  22  |  23  |  24  |  25  |  26  |  27  |  28  |  29  |  30  |  31  |  32  |  33  |  34  |  35  |  36  |  37  |  38  |  39  |  40  |  41  |  42  |  43  |  44  |  45  |  46  |  47  |  48  |  49  |  50  |  51  |  52  |  53  |  54  |  55  |  56  |  57  |  58  |  59  |  60  |  61  |  62  |  63  |  64  |  65  |  66  |  67  |  68  |  69  |  70  |  71  |  72  |  73  |  74  |  75  |  76  |  77  |  78  |  79  |  80  |  81  |  82  |  83  |  84  |  85  |  86  |  87  |  88  |  89  |  90  |  91  |  92  |  93