This book includes a plain text version that is designed for high accessibility. To use this version please follow this link.
The heaviest element on earth is uranium, which has the atomic number 92 in the periodic table. Although superheavy elements up to number 118 have been produced artificially, their atomic nuclei rapidly decay. A subtle quantum effect means that even heavier atomic nuclei above element 120 could exist for years, however. Physicists have been searching for this hypothetical "island of stability" for a long time. An international team that includes Klaus Blaum’s group at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany, has now taken a further crucial step in the right direction.


In a spectacular precision experiment at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, the cooperating team has been able to determine the strength of the shell stability in heavy nuclei with 152 neutrons for the first time. A breakthrough in the understanding of the physics of atomic nuclei.


E. Minaya Ramirez, D. Ackermann, K. Blaum, M. Block, C. Droese, Ch. E. Düllmann, M. Dworschak, M. Eibach, S. Eliseev, E. Haettner, F. Herfurth, F. P. Heßberger, S. Hofmann, J. Ketelaer, G. Marx, M. Mazzocco, D. Nesterenko, Yu. N. Novikov, W. R. Plaß, D. Rodríguez, C. Scheidenberger, L. Schweikhard, P. G. Thirolf, and C. Weber: Direct Mapping of Nuclear Shell Effects in the Heaviest Elements, In: Science Express, August 09, 2012, DOI:10.1126/science.1225636: http://dx.doi.org/10.1126/science.1225636


Researchers at the Agricultural Sciences and Natural Resources University of Gorgan, Iran, managed to fabricate oriented strand boards (OSB) from low quality paulownia wood by using nanoclay and nanosilica.


Ayoub Salari, Taghi Tabarsa, Abolghasem Khazaeian, Ahmadreza Saraeian: Improving some of applied properties of oriented strand board (OSB) made from underutilized low quality paulownia (Paulownia fortunie) wood employing nano-SiO2, In: Industrial Crops and Products, Volume 42, March 2013, Pages 1-9, http://dx.doi.org/10.1016/j.indcrop.2012.05.010


Prof. Dr. Sherif El-Safty, a Principal Researcher of the Materials Recycling Design Group (Group Leader: Dr. Kohmei Halada), Research Center for Strategic Materials, National Institute for Mate- rials Science, Japan, developed a nanomaterial which enables simple detection and removal of arsenic from drinking water. The nanomaterial is a further developed for heavy metal ion sensors for lead (Pb), mercury (Hg), etc. and adsorbent materials, which Dr. El-Safty developed previously for a rare metal adsorption/recovery materials such as cobalt (Co), palladium (Pd), etc. and radioactive element adsorbents for cesium (Cs), strontium (Sr), etc. As a Principal Researcher whom he originally livid at the Middle East, where a clean water is particularly precious, Dr. El-Safty devoted himself to the development of this material in order to save the world’s drinking water.


In the developed technology, the inner walls of nanoporous substances, namely a high order mesoporous (HOM) structures, are densely packed with

Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105