This page contains a Flash digital edition of a book.
news digest ♦ LEDs


especially in the shorter UV wavelengths, was hindered because the materials used in the epoxy LED lens degraded the lifespan of UV LEDs to less than 5,000 hours,” explained Kay Fernandez, Product Technology Manager at Lumex. “Recent technological developments have allowed the epoxy lenses to be replaced by a robust TO-46 package with a glass lens, making it possible for QuasarBrite UVs to last 10 times longer- with life spans of over than 50,000 hours.”


In addition to enhanced life span, QuasarBrite UV LEDs provide several key benefits compared to alternative technologies like CCFLs. QuasarBrite UV LEDs provide a uniform beam pattern. To match this performance CCFLs would require a secondary lens resulting in additional cost and space investment. Additionally, QuasarBrite UV LEDs do not use the hazardous mercury material found in CCFL technology and are more durable in their design, thereby significantly reducing maintenance costs. Finally, Lumex’s UV LEDs have up to 70% lower energy consumption than CCFLs. These factors combined allow Lumex’s QuasarBrite UV LEDs to provide up to a 50% cost savings compared to CCFLs.


“Because of significant cost and performance benefits UV LEDs provide over alternative technologies such as CCFLs, there is a dramatic growth in demand for UV LED technology worldwide,” explained Fernandez. “Lumex now offers a total of six standard UV wavelengths (355, 365, 377, 385, 405 and 415nm) as well as an almost limitless number of custom options to meet the needs of this growing market.”


The new 355nm, 365nm and 377nm QuasarBrite UV LEDs feature a 80° viewing angle and operating temperature range from -40°C to 100°C. Samples of these devices are available immediately from stock. Standard and custom production lead times range from 18-20 weeks. Pricing is dependent on quantity ordered, and is approximately $20 to $28 per unit in production quantities dependent on size and quantity ordered.


Pressureless Silver Sintering Technology from Henkel


Henkel Electronic Materials has announced its success with a revolutionary silver (Ag) sintering technology that enables high volume production of modern power packages in a process that does not require pressure


In its market debut, Henkel’s Ag sintering capability has been designed into Ablestik SSP2000, a high reliability die attach material well-suited for use with power modules such as IGBTs and high power LED products.


Sintering is a process in which particles are joined together by heating the material in a sintering furnace below its melting point until there is particle adhesion. Conventional Ag sintering is achieved by applying both heat and pressure to the material, or device, until the metal joint is formed. The drawback to the pressure application technique in semiconductor packaging, however, is its volume limitation, as devices must be processed individually on capital-intensive die bonding systems. With Ablestik SSP2000, because the silver particles are joined via a unique surface tension mechanism, the pressure requirement is eliminated and the material can be cured in a standard batch oven at a temperature as low as 200 degree centigrade. In addition, Ablestik SSP2000 can be processed on standard die bonding systems, eliminating the need to reinvest in specialist equipment and making the transition from existing materials simple, fast and cost-effective.


“The ability to now exponentially increase UPH from traditional silver sintering techniques at roughly 30 units per hour to a remarkable 6,000 units per hour with the Henkel technology is incredible,” enthusiastically explains Henkel’s Dr. Michael Todd, Vice-President of Product Development and Engineering. “Now, semiconductor packaging specialists canhave high volume and high reliability with a silver sintering material.”


While high UPH is a central advantage of Ablestik SSP2000, even more notable is the material’s thermal resistance and reliability. When compared to high-lead soft solders, which are the current material of choice for power semiconductor devices, Ablestik SSP2000 has far superior power cycling


68 www.compoundsemiconductor.net August/September 2011


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180