This page contains a Flash digital edition of a book.
CPV  industry


for new entrants in the cell market, reliability is your ticket to entry,” says Hartsoch. Decisions by SolFocus on the selection of cell suppliers are heavily influenced by the cost of the device and its performance. “You can have really low cost and lower efficiency, and that’s OK, or you can have really high efficiency and high cost, and that’s OK. The real issue is how the cost of the cells and the related performance affects the overall cost of energy from the system,” says Hartsoch.


Lerchenmüller hold similar views. However, he believes that efficiency is the key metric, arguing that one of the benefits of higher efficiency at the system level is a reduction in the number of cells and modules needed to deliver a given output power. He also thinks that it doesn’t necessarily follow that a cell must be more expensive, if it is more efficient.


Any company that is trying to win orders with CPV system manufacturers may have to begin with a qualification period, which can take several months. SolFocus and Soitec both have IEC-certified product. So if they are to adopt different cells, they have to build modules with these cells and then send them out to test labs to pass IEC certification. “It can take six months,” says Lerchenmüller. CPV system makers will only go with a start-up if it can scale its manufacturing capacity. “This industry is going to grow rapidly,” says Hartsoch,


“so you want to partner with the guys that have a technology that can go to volume manufacturing and increase quickly, and investors that are willing to take the companies there.” She points out that the capital costs for CPV system makers to build a 100 MW factory can be as low as just 12 cents per Watt, and depend on the CPV system design. “ For the cell guys, to increase their capacity, it’s a lot of capital investment.”


If a start-up increases its capacity, it will then be competing with the incumbents that are unlikely to need any in-house investment to cater for the predicted hike in orders over the next few years. “We have at least four cell manufacturers that are readily available to increase product at the right quality and the right cost,” says Lerchenmüller. He explains that these suppliers have a “huge buffer zone” in their manufacturing capacity, which is needed to accommodate the volatility of orders for cells for space applications. It is imperative to hit the deadlines for these aerospace contracts, as the knock- on effects of a delay would be disastrous. “Just converting this overcapacity [into production of cells for CPV] will serve the business for the next two to three years.”


Crunch time


The ease at which global triple- junction cell capacity can


Soitec and SolFocus: Adopting different approaches


The CPV system manufacturers Soitec and SolFocus have adopted different approaches to focusing sunlight onto triple-junction cells: the former uses a single lens, while the latter employs reflecting mirrors.


Soitec prides itself on the simplicity and robustness of its module. Its top part consists of a glass sheet, which


underneath it has a 70 µm-thick silicone film that is embossed and includes the Fresnel lens. The bottom section also features a sheet of glass, which is the foundation for mounting metal heat distributors and the III-V cell.


Engineers at the European outfit have extensively tested silicone for its stability under UV radiation. “We started with just normal UV bulbs, and we didn’t see anything,” says Hansjörg Lerchenmüller, Senior VP of the Customer Group of the


Solar Energy Business Unit at Soitec. So they added more lamps, but were still unable to detect any changes to the silicone. “So we then went down the brute force method and found a guy with a UV laser, and saw the first signs of degradation at UV doses equivalent to something like 3000 years.”


The modules that Soitec makes operate at concentrations of 500 suns. This factor could be increased to 800 or even 1000, but higher concentration requires the addition of a secondary focusing element.


According to Lerchenmüller, it is not clear whether savings resulting from using less semiconductor material outweigh the combination of the additional cost of a secondary optical element; reductions in overall efficiency that stem from additional reflections; increased risk to reliability; and lower manufacturing yields


that result from a more complex production process.


Modules made by Soitec use just one Fresnel lens made from silicone to focus the sun’s rays onto triple-junction cells.


With SolFocus’ reflector-based systems, which currently operate at 650 suns, the case for going to higher concentrations is much stronger. Regardless of the focusing technology, increases in concentration pay the penalty of a reduction in the acceptance angle of the incoming light.


However, according to SolFocus, the acceptance angle for its reflective system – which is over 1° for today’s modules – is two to four times higher than that for most Fresnel-based equivalents.


August / September 2011 www.compoundsemiconductor.net 39


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180