This page contains a Flash digital edition of a book.
conference report  nitrides


ICNS-9 was held on 10-15 July at the Scottish Exhibition and Conference


Centre, Glasgow.


model carrier and photon populations in the laser diodes. He then went on to explain that this work employs the well-known ABC model for determining the evolution of charge carriers – in this widely used model, which is defined in terms of the carrier density n, the carrier recombination rate is described as the sum of three terms: the Shockley-Reed-Hall non-radiative recombination rate, An; the radiative recombination rate, Bn2 Cn3


; and the Auger non-radiative recombination rate, .


According to Scheibenzuber, one advantage of working with lasers, rather than LEDs, is that it is possible to determine the injection efficiency of the device using optical gain spectroscopy. After extracting this value – in this case it was 68 percent – it is possible to separate carrier leakage from the recombination rate.


The European collaboration’s next step was to characterise their laser under very low driving currents and obtain a value for the A coefficient of 4.2 x 107


s-1 .


They then studied the dynamics of the laser, such as relaxation oscillations and turn-on delays, and were finally able to extract values for the B and C coefficients of 3 x 10-12


cm6 s-1 and 4.5 x 10-31 cm6 s-1 .


Scheibenzuber concluded his talk by pointing out that the value obtained for the C coefficient agrees with the value calculated by Chis van de Walle and co-workers from the University of California, Santa Barbara (UCSB). These West-coast theorists believe that the forms of Auger recombination that dominate LED droop involve phonons and alloy disorder.


Further support for Auger recombination as the primary cause of LED droop came from a presentation by Ted


Thrush from the University of Cambridge. He presented electroluminescence intensity plots for a commercial LED driven at current densities from 0.0001 A cm-2


to 100 A cm-2 from 77K to 385K.


Thrush and his colleagues have characterized this LED with a transmission electron microscope: Its threading dislocation density is 1.4 x 109


cm-2


features five wells with thicknesses of 3.2 nm, sandwiched between 4.8 nm-thick barriers.


The ABC model has been used to provide a good fit to the electroluminescence intensity plots, using the same B and C coefficients at all temperatures. Thrush said that consistency of the C coefficient over this temperature range indicated that the droop mechanism was not due to traps, leakage or a direct Auger process. He argued, however, that it was consistent with an impurity- or phonon-mediated Auger process, as suggested by the theoretical work of the UCSB group.


Auger recombination was also blamed as the major culprit behind LED droop in a paper given by Dmitry Zakheim from Ioffe Physico-Technical Institute, Russia, who has been working with researchers from Epi-center and STR-Group. Through a combination of theory and experiment, this partnership from St Petersburg has shown that LED efficiency can be increased by switching from a conventional active region to one based on a short-period superlattice.


Zakheim and his co-workers have used the STR Software SiLENSe 5.0 to model electron and hole distributions in a conventional LED featuring five, 3 nm- thick quantum wells sandwiched between 10 nm-thick barriers. This model – which includes drift and diffusion effects and can account for carrier delocalisation in the active region – revealed that the holes are not uniformly distributed through the active region, but predominantly loacted in the well nearest the p-type region (see Figure 1). According to Zakheim, this high degree of carrier localisation leads to high Auger recombination losses, and ultimately LEDs that suffer from significant droop.


Figure 1. A partnership between Ioffe Physico-Technical Institute, Epi-Center and STR-Group has modelled electron and hole distributions in two types of LED: (a) a device with a conventional active region, containing five, 3 nm- thick quantum wells sandwiched between 10 nm-thick barriers (b) a device with a short-period superlattice active region comprising 2.5 nm-thick wells and barriers.


16 www.compoundsemiconductor.net August / September 2011


Modelling indicates that a far more uniform hole distribution is possible with a superlattice active region comprising 2.5 nm-thick wells and barriers. Such a structure is far better at combating droop: A standard flip-chip LED with a p-type contact formed from ITO and silver had an efficiency at 1 A that was 52 percent of its peak value; in comparison, a similar device with a superlattice active region delivered 76 percent of its peak output at 1 A.


It is also possible to suppress droop by improving the capability of the electron-blocking layer. According to


at temperatures ranging


and its active region


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180