New White Papers now available online
VIEW FOR FREE*
Challenging the Limit of Detection of Compact Spectrometers
By Wasatch Photonics
Traditional thinking is that compact spectrometers do not offer the sensitivity or speed needed to compete with benchtop fluorimeters for many fluorescence measurements. We explain how limit of detection (LOD) and limit of quantitation (LOQ) are defined and measured, and challenge that preconception by demonstrating picomolar LOD for fluorescein with a compact, cost-effective spectrometer capable of capturing 50 ms scans with ease.
Monitoring water quality with fluorescence spectroscopy
By Edinburgh Instruments
Fluorescence spectroscopy has been used to characterise natural organic matter (NOM) in water. Excitation-emission maps reveal the nature and concentration of NOM in river water and can be used as a routine analysis technique in water treatment facilities.
Mission Impossible? Measuring Signals Below the Noise Floor with a Lock-In Amplifier
By Ophir
Measuring optical signals in the femtowatt (10-15) to nanowatt (10-9) range can be a daunting task. In order to achieve significant improvements in noise rejection we need to turn to a lock-in amplifier, which can improve noise rejection by 3 orders of magnitude or more.
Tunable lasers at work with trapped ions By Hübner Photonics
Professor Tobias Schaetz from the Amo Research Group at the University of Freiburg, Germany describes the group’s experimental work with trapped ion systems. Coulomb crystals consisting of isotopically pure Magnesium ions are built employing a new tunable continuous-wave (cw) laser light source: Mg atoms are isotope-selective ionized by resonant two- photon excitation at a wavelength of 285.3 nm.
www.electrooptics.com/whitepapers
*Registration required
Electro Optics
Bloomicon/
Shutterstock.com
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56