FEATURE u Sensors & Automation Smart sensors for smarter
industrial robotics Over the past decade, the global sales volume of industrial robots has tripled, according to Statista. Not only are robots becoming more popular, but their functionality has also increased, allowing more complex tasks to be automated. Here Richard Mount, Director of Sales at ASIC design and supply company Swindon Silicon Systems, explains how custom integrated circuits (ICs) can enable smarter, sensor-driven robots.
B
y the end of 2025, cobots are expected to represent 34 per cent of overall robot sales, representing a new era of industrial
robotics. To move safely around the factory with precision, they must collect and analyse vast amounts of data about their environment. That includes positional data related to the location of the cobot and its human colleagues, and key operational parameters to help ensure efficient, productive and safe operation of the robot. As robotic technology and automation
continue to advance, sensors will be the basis for the critical data needed for these systems.
MAXIMUM CONTROL The first industrial robots were primarily used to simply move objects from one location to another. Today, there is almost no limit to the capabilities of robots. But industrial robots use a large number of sensors to choose paths, perceive changes in the environment and make correct judgements in complex situations. For example, torque sensors give robots a
sense of ‘touch’, enabling them to interact safely with their environment. Most torque sensors employ strain gauges, which convert applied pressure into an electrical signal that can be measured. By combining multiple gauges, the
torque sensor is able to determine the intensity and direction of the force. This allows industrial robots to delicately handle and assemble fragile items without causing damage.
WORKING SAFELY WITH HUMANS Even the most highly automated factory will still have many human employees, so industrial robots must be able to work safely alongside their human co-workers. A factory floor environment can be busy and unforgiving, so robots can have difficulties distinguishing between human workers and other factory equipment. Tactile sensors used in cobots include piezoelectric, piezoresistive, capacitive and elastoresistivity types. Piezoelectric technologies can gather data from the cobot’s joints and transmit that information to the controller. Capacitive sensors can act as proximity sensors, allowing the cobot to slow down when it detects the presence of an object in its path. Most detection sensors, like area sensors, to help it slow down or stop when human workers are close by avoiding collisions.
AS SMART AS POSSIBLE Robots that work precisely and safely on complex tasks rely on sensors that perform reliably and exactly as intended. A smart sensor combines
a sensing element, signal conditioning, signal processing and a communications link, either wired or wireless. The variable monitored by these sensors is typically analogue, but must be converted to a digital signal in order for the data to be analysed and used. This can be done with several off-the-shelf integrated circuits (ICs), but in order to optimise and differentiate performance, system engineers should consider an application specific intergrated circuit (ASIC). ASICs are designed with a specific function in mind and allow for investment in performance where it matters most, helping to meet the manufacturer’s exact requirements and separating them from the competition. When designing an ASIC for a robotic
application, the ASIC design company will integrate as many components as possible into a single package. This may include the sensor where practical, or the project may demand that the sensor is situated outside of the ASIC, or co-packaged in a System in Package (SiP) configuration.
This is also true for the microcontroller and the communications element, where an optimised approach can be adopted as to whether to integrate into the silicon or to co-package with other bare die. Both approaches significantly reduce the system component count, which as a result, increases systems robustness and reliability. ASICs also provide major benefits when considering obsolescence. Before the ASIC design stage is commenced, a silicon process is identified that not only provides the required performance attributes but also delivers the required longevity for the expected product lifetime. Intellectual Property (IP) protection is a
key ASIC strength and Swindon provides its customers full ownership of the completed system design, to ensure their system IP benefits them, and them alone. Choosing an ASIC partner that does not sell standard parts, such as Swindon, will also alleviate the risk of your IP potentially being used at a future date in an in-house product.
Swindon Silicon Systems
www.swindonsilicon.com
18 October 2022 Irish Manufacturing
www.irish-manufacturing.com
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42