search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
EXPERIENCE THE POWER OF THE SEMITEC FT ULTRA THIN. ULTRA FAST. Ultra Versatile. MEDICAL 0.15 mm 1.0mm U ULTRA THIN


ULTRA FAST 0.2 sec


ULTRA VERSATILE -50  +350°C


BATTERIES THE SEMITEC FT 0.15mm thin


THE SMALLEST YET MIGHTIEST THERMISTOR IN THE WORLD


Surpassing other SMDs, our Semitec FT can be placed on or closer to the heat source with response times that are 10x faster than conventional SMDs.


SAFETY • GREATER EFFICIENCIES • LIFETIMES MAXIMISED 01606 871680 smart@atcsemitec.co.uk TD3305 FT advert - Electronics Today half page 195mm x 135mm.indd 1 ELECTRONIC SENSORS


Enhancing 


 are essential tools  


T


hese devices operate by emitting infrared  analysing the returned signal. The core components of an OTDR include a laser diode for transmission and an avalanche photodiode (APD) for signal reception.


Key OTDR Components and Functionality


 typically operate at 1310 nm and/or 1550 nm infrared wavelengths. The APD’s sensitivity plays a crucial role in determining the instrument’s range, which can extend beyond 200 km. One challenge in OTDR operation is the presence of dead zones or event blind areas, which can lead to misinterpretation of closely spaced faults.


Indium Gallium Arsenide (InGaAs) APDs


For the 1100 nm to 1700 nm wavelength range,  and dispersion, InGaAs APDs have become the preferred choice over germanium devices. This preference is due to their lower noise and higher detection bandwidth. However, traditional InGaAs APDs are typically limited to a maximum gain between 10 and 40 before   (TIA).


Advancements in APD Technology  has led to the development of a new class of InGaAs APD technology. These “noiseless” 


gains over 100 without signal-to-noise ratio degradation. The key innovation lies in the addition of antimony alloys to the compound semiconductor manufacturing process.


 APDs


The new antimony-enhanced APDs offer  Increased Sensitivity: 12 times higher sensitivity compared to traditional APDs. Higher Gain: Capable of operating with an internal gain exceeding 120. Improved Recovery: Faster overload recovery, minimising dead zone issues. Temperature Stability: Ten times lower temperature drift and improved stability at high temperatures.


atcsemitec.co.uk 24/11/2023 15:14 3D PRINTERS


WEARABLE TECHNOLOGY


FIRE & SECURITY


CONSUMER ELECTRONICS


PERSONAL CARE


E-MOBILITY


SCAN TO LEARN MORE


NOVEMBER 2024 | ELECTRONICS FOR ENGINEERS


23


0.5mm


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54