search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
INDUSTRIAL


and products that are reaching the end of their initial use, the materials themselves still have a lot of life in them, and their disposal in landfill can be hazardous. It makes economic and environmental sense to recover materials from end-of-life products, like batteries and printed circuit boards (PCBs). Even at a household level, we can identify things like electronic components, batteries, from consumer devices up to electric vehicles, and catalytic converters on cars that can all be recovered and reused. At an industrial scale, we are looking at items like spent industrial catalysts, solar panels, turbines and generators.


The good news is that there is a way to extract critical materials from spent devices and equipment, prevent hazardous waste reaching landfill, and create a beneficial by- product.


The answer lies in plasma technology


Just as critical materials are initially mined from the earth, recovering materials from waste is a process. If we follow the journey of a PC past its usable life, for example; Its responsible owner takes it to the local household recycling centre or puts in a WEEE bin. Initial processing


at a waste management centre strips and shreds the plastics and isolates key materials for extraction. The critical materials are concentrated in the remaining Printed Circuit Boards (PCBs) and can go through a controlled process where plasma technology is applied and the precious metals are recovered. Any spent materials are converted into substances that are benign to the environment. Why plasma? Plasma is an electrically charged – or ionised – gas. It’s sometimes described as the fourth state of matter and occurs naturally in the environment in lightning, sparks from static electricity and the aurora borealis. Plasma is used in television and display screens, fluorescent lighting and even arc welding.


Tetronics uses plasma technology in an extensive range of applications from


recovering precious metals to removing the toxicity of industrial materials like asbestos and air pollution control residues. To recover critical metals from electronic equipment, Tetronics’ process involves introducing the materials – in the PCB feedstock – into a sealed furnace and using a plasma arc to apply intense heat and ultra-violet light in a controlled environment. The chemistry separates and recovers the valuable metals, minerals and other materials from the feedstock. The process destroys any hazardous elements and leaves behind a non- hazardous glass-like material called Plasmarok. This itself is used as an aggregate in road paving and pipe bedding for the construction industry. Nothing is wasted. And, because it is powered by electricity rather than fossil fuels, it can be one of the cleanest thermal processing technologies available.


Using plasma technology to recover precious metals returns some significant financial benefits. Consider the mobile phone graveyard playing out in many a kitchen drawer: a YouGov survey of 2,000 UK adults showed that 67 per cent own one or more redundant mobile phones. Research commissioned by giffgaff suggests unused and recyclable mobile phones across the UK could be worth an estimated £3.4 billion. Overlay this with the UN’s Global E-waste Monitor report that says that only 20 per cent of e-waste is recycled, and the volume of recoverable resources being needlessly stashed or thrown away is


astonishing.


As compelling as the financial and environmental benefits of critical mineral recovery are, there are other benefits to be had. It removes the risk to public health from dumped heavy metals like lead and cadmium, leaching into the soil and water table landfill sites. It prevents the exploitation of people in poorer economies who are used to source or recover materials in uncontrolled, unsafe, practices, and it reduces the opportunities for the illegal and dangerous trade in e-waste. There could be a case for tighter legislation around recycling e-waste, but the intention to alleviate the pressure on primary supply outlined in the government’s policy paper is a good starting point. The need to promote innovation for a more efficient circular economy in the UK is being strongly reinforced by recovery specialists like Tetronics. The company has the technology, the capacity and the desire to recycle more. It may take manufacturers and suppliers of mobile phones, laptops, batteries and many other electronic devices, to play a bigger part in encouraging consumers to recycle old equipment and release the value currently hiding away, untapped; whether inside our homes or parked in front them.


Tetronics www.tetronics.com NOVEMBER 2022 | ELECTRONICS TODAY 25


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44