search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
• • • TEST & MEASUREMENT • • •


Power Quality Monitoring:


The importance of standards compliant power quality measurements


Jose Mendia, senior engineer, product applications, Analog Devices, discusses the importance of power quality (PQ) measurements in today’s electric infrastructure and reviews areas of application for PQ monitoring


he article will cover the IEC standard for power quality and its parameters. It will also summarise the key differences between Class A and Class S power quality meters. Power quality has found a renewed interest due to changing power generation modes and consumption dynamics. The unprecedented growth in renewable sources at different voltage levels has increased the amount of PQ related issues. Consumption patterns have also seen a wide transformation due to unsynchronised loads added at multiple entry points of the grid and voltage levels.


T


Figure 2: The dynamics of generation and consumption can lead to power quality issues across electric infrastructure


Some examples are electric vehicle (EV) chargers that can require hundreds of kilowatts and a great number of data centres and their related equipment such as heating, ventilation, and air conditioning. In industrial applications, arc furnaces that run by variable frequency drives, switching transformers, etc. not only add a lot of unwanted harmonics to the grid, but are also responsible for voltage dips, swells, transient brownouts, and flicker.


Power quality in the utility space refers to the quality of the voltage delivered to the consumer; a series of prescribed regulations for the magnitude, phase, and frequency determine this quality of service. However, by definition, it denotes both voltage and current. While the voltage is easily controlled by the generation side, the current is governed largely by consumer usage. The concept and implications of PQ issues are rather widespread depending on the end users. The economic impact of bad PQ has been studied and surveyed extensively in the last few years; its effects are estimated to be in the region of billions of dollars worldwide.


Figure 1: Power quality issues 18 ELECTRICAL ENGINEERING • MARCH 2024


All these studies conclude that monitoring the quality of power has a direct impact on the economic results of many business sectors. Even though it is clear how bad PQ negatively affects the economics of business, monitoring it efficiently and effectively at scale is not an easy task. Monitoring PQ in a facility involves having highly trained personnel and expensive equipment installed on multiple points along the electric system for long or indefinite periods of time.


Power quality monitoring


areas of application Power quality monitoring is often seen as a cost saving strategy for some business sectors and a critical activity for others. Power quality issues can arise in a broad range of electric infrastructure, as illustrated in Figure 2. As we’ll discuss later, power quality monitoring is becoming increasingly critical in business sectors such as electric generation and distribution, EV charging, factories, and data centres.


Electricity utility companies, electricity transmission,


and distribution Utility companies serve the consumers with distribution systems that include generating stations, which are power substations that supply electricity via transmission lines.


The voltage supplied via these transmission lines is stepped down to lower levels by substation transformers, which inject certain harmonics or inter-harmonics to the system.


electricalengineeringmagazine.co.uk


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50