search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Nuclear power |


old steam turbine technology to convert that heat into electricity. Why? Because it works, and it will allow us to progress far more quickly towards a commercial fusion plant.


As a commercial proposition, our sophisticated target designs will enable us to pursue a high value-added consumables business model, where we will partner with power plant builders and operators and become the fuel provider in the form of the targets. We believe this is the fastest way to scale our technology, the rest of the plant is simple enough to be built by others. Fusion science has to move forward, away from simply experiments to “real life.”


Above: Dr Nick Hawker in front of the BFG (Big Friendly Gun)


laser as the “spark plug”, triggering the reaction, we use a high velocity projectile instead.


Towards a pilot plant In our planned future fusion power plant, the fusion energy will be absorbed by liquid lithium, flowing like a big shower inside the reaction chamber. The flowing liquid protects the chamber from the huge energy release, sidestepping two of the key challenges mentioned above, and heats up in the process. The specific choice of lithium will also allow the production of tritium, and can use the natural isotope mix, for which an established supply chain already exists. A heat exchanger transfers the heat of the lithium to water, generating steam that turns a turbine and produces electricity. We might be producing heat in a way that has never been done before, but we will still use tried and tested 150 year


We currently have two machines to develop our approach – the first is called “Machine 3” (guess how many predecessors it had), the largest pulsed power facility in Europe. Using extreme electromagnetic forces, it is primarily employed to launch projectiles at the hypervelocity required to test our fusion targets.


The second is our two-stage hyper-velocity gas gun, the Big Friendly Gun, or BFG. This gas gun, the largest of its kind in the UK, at 22 m long, weighing 25 000 kg, fires a 100 g projectile at a velocity of 6.5 km/s or 14 500 mph (about 20 times the speed of sound) into the target. It was in fact with the BFG that we achieved our maiden fusion results at the end of last year. We are often asked “what next”, as if by announcing our fusion result we had somehow finished our mission. But the opposite is true. The achievement of fusion was simply a milestone, albeit it an important one, in our longer-term journey. For us, it is proof our concept works. Of course, our simulations told us it would, and we were always very confident, but we still had to prove it.


But now the fun really starts. Though huge effort has been dedicated towards achieving this milestone, we have always had the bigger picture front of mind. The fusion result simply gives us greater confidence to accelerate towards our next objectives – these are “gain” (getting more energy out than in) and of course, working on the pilot power plant. And we won’t pack up Machine 3 or the BFG, we’ll keep improving the targets and finding more performance.


Plans for our gain demonstrator are well advanced and with a fair wind, we think it is a 4-5 year programme to build it. This will require a big new piece of kit of course, Machine 4, but we know exactly what we need, how long it will take, the design and the cost. Again, this comes down to the confidence in our technology and the relative simplicity of our approach. In parallel with gain, we will start setting up relationships with established industry players and regulators to produce detailed, licenced design plans for a pilot power plant, while also working to de-risk critical supporting technology. We are working towards a pilot plant in the 2030s with an installed capacity of about 150 MWe and costing less than $1 billion. We have recently announced a long-term partnership with Spanish engineering company IDOM to support the development of our fusion reaction chamber. IDOM will work closely with our team to scope the design and provide detailed analysis and options for the liquid lithium system and the reaction chamber.


The urgency of our work has increased, not slowed, after demonstration of fusion. Russia’s invasion of Ukraine and the spiralling cost of energy has only added new focus on our mission. Fusion, sadly, can’t help the current crisis, but it can have a material impact in the future. It’s vital to get this right and with the support of our people but also industry partners, we believe we can do it.


Below: First Light Fusion power plant schematic


34 | September 2022| www.modernpowersystems.com


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45