DIGITAL/BIM | TECHNICAL
Multi-LOD BIM for underground metro station: Interoperability and design-to-design enhancement. Tunn. Undergr. Space Technol. 119, 104232.
● Ilyashuk, E.A., Ilyashuk, B.P., Heiri, O., & Spötl, C. (2022) Summer temperatures and environmental dynamics during the Middle Würmian (MIS 3) in the Eastern Alps: Multi-proxy records from the Unterangerberg palaeolake Austria. Quat. Sci. Adv. 6, 100050.
● ISSMGE (2022). TC222 Geotechnical BIM and DT. Accessed 7 March 2022. https://www.
issmge.org/ committees/technical-committees/applications/ geotechnical-bim-and-dt.
● Kanji, M.A. (2014). Critical issues in soft rocks. J. Rock Mech. Geotech. Eng. 6, 186–195.
● Kapogiannis, G., & Mlilo, A. (2020). Digital Construction Strategies and BIM in Railway Tunnelling Engineering. In: Sakellariou, M. (Ed.), Tunnel Engineering – Selected Topics. IntechOpen.
● Karasek, G. (2021) Der Tunnelbauvertrag – Eine Bestandsaufnahme. Geomechanik und Tunnelbau 14, 755–761.
● Kessler, H., Wood, B., Morin, G., Angels, G., Gerald, M., Oliver, D., Ross, F., & Rachel, D. (2015). Building Information Modelling (BIM) – A Route for Geological Models to Have Real World Impact. AER/AGS Special Report.
● Marcher, T., Erharter, G.H., & Winkler, M. (2020) Machine Learning in tunnelling – Capabilities and challenges. Geomechanik und Tunnelbau 13, 191–198.
● Mitelman, A., & Gurevich, U. (2021). Implementing BIM for conventional tunnels – a proposed methodology and case study. ITcon 26, 643–656.
● Molzahn, M., Bauer, J., Henke, S., & Tilger, K. (2021) Das Fachmodell Baugrund. Geotechnik 44, 41–51.
● Ninic, J., Alsahly, A., Vonthron, A., Bui, H.-G., Koch, C., König, M., & Meschke, G. (2021) From digital models to numerical analysis for mechanised tunnelling: A fully automated design-through-analysis workflow. Tunn. Undergr. Space Technol. 107, 103622.
● Ninic, J., Bui, H.G., & Meschke, G. (2020). BIM-to-IGA: A fully automatic design-through- analysis workflow for segmented tunnel linings. Adv. Eng. Inf. 46, 101137.
● OGC (2017) OGC Geoscience Markup Language 4.1 (GeoSciML). Accessed 2 March 2022 Open Geospatial Consortium.
https://docs.opengeospatial.org/is/16- 008/
16-008.ht ml
● OGC (2021) OGC WaterML 2: Part 4 - GroundWaterML 2 (GWML2).
https://docs.ogc.org/is/19-013/19-013.html. Accessed 2 March 2022.
● OGC (2022) Geotech IE.
https://www.ogc.org/projects/ initiatives/geotechie. Accessed 7 March 2022.
● ÖGG (2021) Richtlinie für die Geotechnische Planung von Untertagebauten mit zyklischem Vortrieb: Gebirgscharakterisierung und Vorgangsweise zur nachvollziehbaren Festlegung von bautechnischen Maßnahmen während der Planung und Bauausführung, 3rd ed., Salzburg, 66pp.
● Ortner, H. (2003) Cementation and Tectonics in the Inneralpine Molasse of the Lower Inn Valley. Geologische Paläontologische Mitteilungen Innsbruck 26, 71–89.
● Ortner, H., S& tingl, V. (2001) Facies and Basin Development of the Oligocene in the Lower Inn Valley, Tyrol/Bavaria. In: Piller, W.E., & Rasser, M.W. (Eds.) Paleogene of the Eastern Alps, Wien, pp. 153–196.
● Pan, D., Li, S., Xu, Z., Zhang, Y., Lin, P., & Li, H. (2019). A deterministic-stochastic identification and modelling method of discrete fracture networks using laser scanning: Development and case study. Eng. Geol. 262, 105310.
● Parry, S., Baynes, F.J., Culshaw, M.G., Eggers, M., Keaton, J.F., Lentfer, K., Novotny, J., & Paul, D. (2014). Engineering geological models: an introduction: IAEG commission 25. Bulletin of the Georgian Academy of Sciences Eng Geol Environ 73, 689–706.
● Poscher, G., Eder, S., Marschallinger, R., & Sedlacek, C. (2008) Trassenstudien im östlichen Inntalabschnitt: Erkundungsprogramm Brenner-Basistunnel. Felsbau 92–102.
● Providakis, S., Rogers, C.D.F., & Chapman, D.N. (2021) 3D spatiotemporal risk assessment analysis of the tunnelling-induced settlement in an urban area using analytical hierarchy process and BIM. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 1–16.
● Providakis, S., Rogers, C.D.F., Chapman, D.N. (2020) Assessing the Economic Risk of Building Damage due to the Tunneling-Induced Settlement Using Monte Carlo Simulations and BIM. Sustainability 12, 10034.
● Sommer, P., Erharter, G.H., Sedlacek, C., Strasser, M., & Poscher, G. (2019) Geologische Erkundung und Trassen-planung im gasführenden Tertiär des Unterinntals, Tirol, in: Fachsektionstage Geotechnik. Interdisziplinäres Forum. Fachsektionstage Geotechnik, Würzburg. 29. - 30. Oktober 2019.
● Wang, G., & Zhang, Z. (2021) BIM implementation in handover management for underground rail transit project: A case study approach. Tunn. Undergr. Space Technol. 108, 103684.
● Weichenberger, F.P., Schwaiger, C., & Höfer-Öllinger, G. (2020) Von der geologischen Aufnahme zur BIM- Repräsentation. Geomech. Tunnelling 13, 199–211.
● Weil, J. (2020) Digitale Baugrundmodelle im Tunnelbau – Status, Chancen und Risiken. Geomech. Tunnelling 13, 221–236.
● Weil, J., Pöschl, I., & Kleberger, J. (2019) Innovative 3D ground models for complex hydropower projects. In: Tournier, J.-.-P., Bennett, T., & Bibeau, J. (Eds.), Sustainable and Safe Dams Around the World. CRC Press, pp. 1051–1057.
● Wenighofer, R., Waldhart, J., Eder, N., & Zach, K. (2020) BIM-Anwendungsfall (AwF) Abrechnung-Vortrieb am Beispiel des Zentrums am Berg. Geomech. Tunnelling 13, 237–248.
October 2023
| 23
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49