TECHNICAL | DIGITAL/BIM
REFERENCES
● Alsahly, A., Hegemann, F., König, M., & Meschke, G. (2020) Integrated BIM-to-FEM approach in mechanised tunnelling. Geomech. Tunnelling 13, 212–220.
● Baynes, F., & Parry, S. (2022) Guidelines for the development and application of engineering geological models on projects. Publication No. 1, 134pp.
● Berdigylyjov, M., & Popa, H. (2019). The implementation and role of geotechnical data in BIM process. E3S Web Conf. 85, 8009.
● Bland, J., Walthall, S., & Toll, D. (2014) The Development and Governance of the AGS Format for Geotechnical Data. In: Toll, D.G., Zhu, H., Osman, A., Coombs, W., Li, X., & Rouainia, M. (Eds.) Information technology in geo-engineering. Proceedings of the 2nd international conference (ICITG), Durham, UK. IOS Press/Millpress, Amsterdam, pp. 67–74.
● BMVI. Stufenplan Digitales Planen und Bauen: Einführung moderner, IT-gestützter Prozesse und Technologien bei Planung, Bau und Betrieb von Bauwerken. Bundesministerium für Verkehr und digitale Infrastruktur.
https://www.bmvi.de/SharedDocs/DE/ Publikationen/DG/stufenplan-digitales-bauen.pdf?_ blob=publicationFile. Accessed 3 March 2022.
● Borrmann, A., König, M., Koch, C., & Beetz, J. (2019). BUILDING INFORMATION MODELING: Technology foundations and industry practice. Springer.
● buildingSMART, 2020. IFC-Tunnel Project (draft): Report WP2: Requirements analysis report (RAR), 176pp.
● buildingSMART, 2022. Infrastructure Room. buildingSMART.
https://www.buildingsmart.org/ standards/rooms/infrastructure/. Accessed 7 March 2022.
● Cadden, A., & Keelor, B. (2017). Implementation and transition of data interchange for geotechnical and geoenvironmental specialists (DIGGS v2.0).
● Caumon, G., Collon-Drouaillet, P., Carlier, L.e., de Veslud, C., Viseur, S., & Sausse, J. (2009) Surface-Based 3D Modeling of Geological Structures. Math Geosci 41, 927–945.
● Cudrigh-Maislinger, S. (2018) 3D geological modelling – Through the example of Karawanken Tunnel project, northern section. Geomech. Tunnelling 11, 530–536.
● Cudrigh-Maislinger, S., Hruschka, S., Niedermoser, C., Torggler, N., & Steiner, P. (2020) Karawankentunnel Nord, Konzept und Ausführung eines BIM-Pilotprojekts. Geomech. Tunnelling 13, 178–190.
● Daller, J., Zibert, M., Exinger, C., & Lah, M. (2016) Implementation of BIM in the tunnel design – Engineering consultant’s aspect. Geomechanik Tunnelbau 9, 674–683.
● DAUB (2022) Modellanforderungen – Teil 3: Baugrundmodell, Ergänzung zur DAUB-Empfehlung BIM im Untertagebau. Empfehlung Digitales Planen, Bauen und Betreiben von Untertagebauten, DAUB - Deutscher Ausschuss für unterirdisches Bauen e. V., German Tunnelling Committee (ITA-AITES), p.42 ● DAUB (2019) BIM in Tunnelling. 44pp.
● DAUB (2020) Model requirements – Part 1: Object definition, coding and properties. Supplement to DAUB recommendation BIM in Tunnelling (2019).
● Deutschmann, D. (2021) Allianzverträge – Ohne Rechtsstreit durch die Krise. Geomechanik und Tunnelbau 14, 782–793.
● DGGT (2022) Digitalisierung in der Geotechnik: Arbeitskreis 2.14 der Deutschen Gesellschaft für Geotechnik. Deutsche Gesellschaft für Geotechnik. https://ak214.
arbeitskreis-dggt.de/empfehlungen/. Accessed 7 March 2022.
● DVA, (2016) VOB 2016. Deutscher Vergabe- und Vertragsausschuss für Bauleistungen. https://www.
vob-online.de/de/vob-gesamtausgaben/vob-2016. Accessed 7 March 2022.
● Eang (2014) Empfehlungen des Arbeitskreises Numerik in der Geotechnik: EANG. Ernst, Berlin, p.181.
● Erharter, G. H., Poscher, G., Sommer, P., & Sedlacek, C. (2019). Geotechnical characteristics of soft rocks of the Inneralpine Molasse – Brenner Base Tunnel access route, Unterangerberg, Tyrol, Austria. Geomechanik und Tunnelbau 12, 716–720.
● Erharter, G. H., Tschuchnigg, F., & Poscher, G. (2021) Stochastic 3D modelling of discrete sediment bodies for geotechnical applications. Applied Computing and Geosciences 11, 100066.
● Erharter, G. H., Weil, J., Tschuchnigg, F., & Marcher, T. (2022). Potential applications of machine learning for BIM in tunnelling. Geomech. Tunnelling 15, 216–221.
● Fabozzi, S., Biancardo, S.A., Veropalumbo, R., & Bilotta, E. (2021) I-BIM based approach for geotechnical and numerical modelling of a conventional tunnel excavation. Tunn. Undergr. Space Technol. 108, 103723.
● FIDIC (Ed.) (2019) Conditions of Contract for Underground Works (2019 Emerald book).
● Gächter, W., Exenberger, H., Fasching, A., Hillisch, S., Mulitzer, G., Seywald, M., Rettenbacher, M., Fleischmann, G., Fröch, G., & Flora, M. (2021) Anwendungsmo glichk ̈
eiten eines digitalen Baugrundmodells im Infrastrukturbau. Geomech. Tunnelling 14, 510–520.
● Gong, J., Cheng, P., & Wang, Y. (2004) Three-dimensional modeling and application in geological exploration engineering. Comput. Geosci. 30, 391–404.
● Holsmölle, K. (2022) Der Baugrund als digitaler Zwilling: BIM als Chance für höhere Baugrundsicherheit, 1st ed. bSD Verlag - Haus der Bundespressekonferenz / 4103, Berlin, 60pp.
● Horner, J., Naranjo, A., & Weil, J. (2016). Digital data acquisition and 3D structural modelling for mining and civil engineering – the La Colosa gold mining project, Colombia. Geomechanik und Tunnelbau 9, 52–57.
● Huang, M. Q., Ninic, J., & Zhang, Q.B. (2021). BIM, machine learning and computer vision techniques in underground construction: Current status and future perspectives. Tunn. Undergr. Space Technol. 108, 103677.
● Huang, M.Q., Zhu, H.M., Ninic, J., & Zhang, Q.B. (2022).
22 | October 2023
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49