search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
TECHNICAL | DEEP DISPOSAL


Exhaustive analysis of chlorine-36 levels, in the


interstitial waters surrounding and permeating the near- surface near layers of the earth, shows conclusively surface waters continue to migrate downward, reaching any stored HLW material. The inevitable chemical, physical, and electrolytic degradation of HLW materials stored in the repository shall occur, regardless of any subsequent artificial protective systems, such as titanium umbrella sheets. Safe disposal of high level waste must be done


in very deep formations to preclude the deleterious and disastrous effects of any possible downward fluid percolation over geologic time. No man-made protection within reach of water will be able to sustain its protection for the extraordinary period of time required for high level waste storage. Supporters of near surface mining techniques indicate


their solution to the water migration problem is the use of titanium ‘umbrellas,’ retroactively fitted to protect


the capsules, and also the use of bentonite material as a repository ‘backfill’ which ‘swells’ to mitigate fluid flow in the capsule zone. It is difficult to see how these measures can maintain the required level of safety for a minimum of 10,000 years, much less than for the geological time scale needed for safe waste disposal. The better solution is to design and implement a deep


repository in a location where there is no chance of fluid flow into or out of the system. Such a system must be inside a massively impermeable rock zone, at great enough depths such that no downward migration of surface water can ever reach it. This is the key basis for the selection of the deep horizontal wellbore storage. In addition, we can also learn a lot from ongoing


oilfield fracking operations which have provided insight into the ability of rock to allow fluid migration. The ‘tight’ nature of the deep fracking zones mean they are initially non-productive. In order for fluid to enter into these zones, engineers must use ultra-high pressure pumps, with surface pressures up to 19,800 psi. Without these extremely high pressures, no fluid flows into the rock matrix. It can be inferred from the massive effort required that very little flow would occur out of the repository rock because of the extremely low permeability. Thus, the use of the deep horizontal wellbore in these very tight rock zones is best suited for safe waste disposal.


BETTER LATE THAN NEVER There are still many who are skeptical of the deep horizontal wellbore approach. While it is true that this horizontal wellbore system has not been done before, there has never been a DGR implemented on the planet either. However, there are several hundred thousand successful horizontal wellbores in operation around the world today. We should be asking why billions have been unquestionably and unsuccessfully wasted on continued DGR efforts for decades, and why we have not yet moved on to a better solution.


Above:


Germany’s Niedersachsen, Gorleben, a radioactive waste site in a former salt mine


Right:


Deep directional drilling is a standard technique in the oil and gas sector


46 | July 2023


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53