ROCK TUNNELS | DEEP REPOSITORY R&D FOR RADIOACTIVE WASTE
REFERENCES
● Alonso, E.E., Gens, A. & Josa, A. (1990) A constitutive model for partially saturated soils. Géotechnique 40:405–430.
https://doi.org/10. 1680/ geot.1990.40.3.405
● Alonso, E.E., Vaunat, J. & Gens, A. (1999) Modelling the mechanical behaviour of expansive clays. Eng Geol 54:173–183. https://
doi.org/10.1016/ S0013-7952(99)00079-4
● Armand, G., Noiret, A., Zghondi, J. & Seyedi, DM. (2013) Short- and long-term behaviours of drifts in the Callovo-Oxfordian claystone at the Meuse/ Haute-Marne Underground Research Laboratory. J Rock Mech Geotech Eng 5:221–230.
https://doi.org/10.1016/j. jrmge.2013.05.005
● Armand, G., Leveau, F., Nussbaum, C., de La Vaissiere, R., Noiret, A., Jaeggi, D., Landrein P. & Righini, C. (2014) Geometry and properties of the excavation-induced fractures at the Meuse/ Haute-Marne URL drifts. Rock Mech Rock Eng 47:21–41.
https://doi.org/10. 1007/s00603-012-0339-6
● Bastiaens, W., Bernier, F. & Li, XL. (2007) SELFRAC: experiments and conclusions on fracturing, self-healing and self-sealing processes in clays. Phys Chem Earth 32:600–615.
https://doi.org/ 10.1016/j.pce.2006.04.026
● Bernachy-Barbe, F., Conil, N., Guillot, W. & Talandier, J. (2020) Observed heterogeneities after hydration of MX-80 bentonite under pellet/powder form. Appl Clay Sci 189:105542.
https://doi.org/10. 1016/
j.clay.2020.105542
● Blümling, P., Bernier, F., Lebon, P. & Martin, D.C. (2007) The excavation- damaged zone in clay formations time-dependent behaviour and influence on performance assessment. Phys Chem Earth 32:588–599.
https://doi.org/10.1016/j.pce.2006.04.034
● Bosgiraud, J.M., Bourbon, X., Pineau, F. & Foin, R. (2015) The DOPAS full scale seal experiment (FSS): an industrial prototype for Cigeo. Presented at the International Symposium on Cement-based Materials for Nuclear Wastes, Avignon 2014 (NUWCEM 2014)
● De La Vaissière, R., Armand, G. & Talandier, J. (2015) Gas and water flow in an excavation-induced fracture network around an underground drift: a case study for a radioactive waste repository in clay rock. J Hydrol 521:141–156.
https://doi.org/10. 1016/j.jhydrol.2014.11.067
● Delay, J., Vinsot, A., Krieguer, J.M., Rebours, H. & Armand, G. (2007) Making of the underground scientific experimental programme at the Meuse/ Haute Marne URL, North Eastern France. Phys Chem Earth 32:2–18.
https://doi.org/10.1016/j.pce.2006.04.033
● Gens, A. (2004) The role of geotechnical engineering for nuclear energy utilisation. In: Vanicek I et al. (eds) Proceedings of the 13th European conference on soil mechanics and geotechnical engineering, vol 3, Prague, pp 25–67
● Gens, A. & Alonso, E.E. (1992) A framework for the behaviour of unsaturated expansive clays. Can Geotech J 29:1013–1032. https://doi. org/10.1139/ t92-120
● Gens, A., Valleján, B., Sánchez, M., Imbert, C., Villar, M.V. & Van Geet, M. (2011) Hydromechanical behaviour of a heterogeneous compacted soil: experimental observations and modelling. Géotechnique 61:367–386.
https://doi.org/10.1680/geot.SIP11.P.015
● Gens, A., Alcoverro, J. & Blaheta, R. et al (2021) HM and THM interactions in bentonite engineered barriers for nuclear waste disposal. Int J Rock Mech Min Sci 137:104572.
https://doi.org/10.1016/j. ijrmms.2020.104572
● Hoffmann, C., Alonso, E.E. & Romero, E. (2007) Hydro-mechanical behaviour of bentonite pellet mixtures. Phys Chem Earth 32:832–849. https://doi. org/10.1016/j.pce.2006.04.037
● Imbert, C. & Villar, M.V. (2006) Hydro-mechanical response of a bentonite pellets/powder mixture upon infiltration. Appl Clay Sci 32:197–209.
https://doi.org/10.1016/j.clay.2006.01.005
● Manica, M., Gens, A., Vaunat, J. & Ruiz, D.F. (2016) A cross-anisotropic formulation for elasto-plastic models. Geotech Lett 6:156–162. https://doi. org/10.1680/jgele.15.00182
● Manica, M., Gens, A., Vaunat, J. & Ruiz D.F. (2017) A time-dependent anisotropic model for argillaceous rocks. Application to an underground excavation in Callovo-Oxfordian claystone. Comput Geo- tech 85:341–350.
https://doi.org/10.1016/j.compgeo.2016.11.004
● Manica, M., Gens, A., Vaunat, J., Armand, G. & Vu, M.N. (2022) Numerical simulation of underground excavations in an indurated clay using non-local regularisation. Part 1: formulation and base case. Geotechnique 72(12):1092–1112.
https://doi.org/10.1680/jgeot. 20.P.246
● Noiret, A., Bethmont, S., Bosgiraud, J.M. & Foin, R. (2016) DOPAS work package 4 deliverable 4.8 FSS experiment summary report ● Olivella, S., Carrera, J., Gens, A. & Alonso, E.E. (1994) Non-isothermal multiphase flow of brine and gas through saline media. Transp Porous Media 15:271–293.
https://doi.org/10.1007/BF00613282
● Ruiz Restrepo, D.F. (2020) Hydro-mechanical analysis of expansive clays: constitutive and numerical modelling, PhD thesis, Universitat Politècnica de Catalunya, Spain
● Seyedi, D.M., Armand, G. & Noiret, A. (2017) ‘Transverse Action’—a model benchmark exercise for numerical analysis of the Callovo-Oxfordian claystone hydromechanical response to excavation operations. Comput Geotech 85:287–305.
https://doi.org/10. 1016/
j.compgeo.2016.08.008
● Sellin, P. & Leupin, O.X. (2013) The use of clay as an engineered barrier in radioactive-waste management a review. Clays Clay Miner 61:477–498.
https://doi.org/10.1346/CCMN.2013.0610601
● Souley, M., Zghondi, J., Vu, M.N. & Armand, G. (2017) A constitutive model for compressible materials: application to the study of interaction between supports and rock mass. Presented at the 7th International Conference on Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, Davos
● Wang, H., De La Vaissière, R., Vu, M.N., La Borderie, C. & Gallipoli, D. (2022a) Numerical modelling and in-situ experiment for self-sealing of the induced fracture network of drift into the Callovo-Oxfordian claystone during a hydration process. Comput Geotech 141:104487. https://doi. org/10.1016/
j.compgeo.2021. 104487
● Wang, H., Dong, Q., De La Vaissière, R., Vu, M.N., La Borderie, C., Gallipoli, D. & Sun, H. (2022b) Investigation of hydro-mechanical behaviour of excavation induced damage zone of Callovo-Oxfordian claystone: numerical modelling and in-situ experiment. Rock Mech Rock Eng 55:6079–6102.
https://doi.org/10.1007/s00603-022-02938-0
● Wileveau, Y., Cornet, F.H., Desroches, J. & Blumling, P. (2007) Complete in-situ stress determination in an argillite sedimentary formation. Phys Chem Earth 32:866–878.
https://doi.org/10.1016/j.pce.2006. 03.018
● Zghondi, J., Vu, M.N. & Armand, G. (2017) Mechanical behavior of different concrete lining supports in the Callovo Oxfordian claystone. Presented at the 7th International Conference on Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, Davos
34 | February 2025
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53