search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
OPERATIONS & MAINTENANCE


Keeping petrochemical plants safe, sustainable, and


productive in today’s volatile world is essential


PCR CREDIT istock Sean Pavone


Aggreko invested £150 million into its European fleet over 2022-23


ADAPTING TO THE NEW NORMAL Yet with the concerning news about Germany’s declining river levels, this strategy may no longer be fit-for- purpose. Put simply, the plant cannot be cooled by water that is no longer there, so more unplanned downtime and disruptive events may ensue. The newly introduced nationwide water conservation strategy must also be accounted for, as it could be a sign of things to come for industries that intensively use water. Faced with this wider scarcity threat


and tightening regulations, facility stakeholders need to be aware of what could become the new normal, and consider how they may need to adapt site processes accordingly. Alternatives to open loop systems, including closed and semi-open circuits, should therefore be explored if the petrochemical industry is to mitigate any potential disruption.


hydrocarbon molecules are broken up into lighter molecules – and catalytic reforming, where refinery naphthas are distilled from crude oil into high-octane liquid products. Water is also used to cool and liquify


hydrocarbons, as well as in refluxing – the running of gas vapours from the top of distillation columns through a cooler to condense it for further use in plant systems. Given its versatility and crucial role in a plant’s day-to-day operations, a consistent supply is vital, so the traditional method of harnessing river water and dispersing cooled wastewater has continued unchallenged as the standard in petrochemical refining.


CLOSED AND SEMI-OPEN LOOP SYSTEMS What sets the semi-open circuit system design apart from traditional open-loop models is its greater emphasis on water conservation. In a semi-open design, up to 98% of water used on-site is conserved, with the only losses coming from cooling towers economically and efficiently releasing heat through steam. Consequently, issues relating to falling river levels may no longer be as pressing, as consumption can be drastically reduced during potential droughts. Closed-loop circuits appeal in a


similar way, as they are exactly that – closed. They recirculate a fixed volume of water through on-site cooling towers to ensure no loss of resources, using chillers to maintain the fluid’s


temperature after it passes through the demanding plant environment. Although this approach allows for even greater conservation, the additional equipment it requires may lead to increased energy consumption. Considering the power pricing


volatility of the past few years, plant stakeholders may be left in a position where opting for more sustainable practices may come with considerable financial downsides. With all industries under pressure to do more with less, specifying energy-efficient solutions is therefore a must for plants adopting either strategies involving closed or semi-open loop systems.


LIVING IN A MODULAR WORLD Alongside these twin cost and green pressures, plant stakeholders also need to account for the weather’s inherent unpredictability. Indeed, although there is a consensus among scientists that this summer’s heatwaves will become more likely due to climate change, these wider trends may not be reflected in the day-to-day weather patterns. Even if the bigger picture points


to gradually shallower rivers, this continued unpredictability may make it harder for facility and plant managers to present a business case for permanent equipment. This is understandable – German industry is under more pressure than ever to decarbonise while remaining competitive at home and abroad, and capex budgets can only stretch so far. Instead, what is required is a dynamic,


modular approach to equipment procurement. By adopting hire strategies for key cooling tower, chiller and generator solutions, plants can be more responsive to both legislative and weather-based developments, with the


www.engineerlive.com 15


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52