ENVIRONMENTAL MONITORING AT ONE OF THE WORLD’S MAJOR PORTS
Port of Antwerp is undertaking an impressive range of environmental initiatives that go beyond mere regulatory compliance. As a public limited company, with the city of Antwerp as the sole shareholder, the port employs more than 1,600 employees, and aims to be Europe’s most sustainable port, reconciling economic, social and ecological interests. In the following article, we will examine the port’s challenges and explore the ways in which environmental monitoring is driving a wide variety of improvement projects.
Historical pollution at ports
For a number of reasons, ports represent one of the most challenging environments to protect and improve. Historically, rivers have been treated as convenient recipients of both industrial and municipal waste, and many have transported and deposited this waste in ports. Simultaneously, the environmental impacts of the shipping sector were largely unregulated in the past. The combustion of heavy fuels and degassing caused the release of sulphur dioxide, nitrogen oxides, particulate matter and volatile organic compounds (VOCs), and signifi cant quantities of wastewater were routinely discharged into marine waters. Ports have therefore become a focal point for pollution, and as Europe’s second largest port, Antwerp is faced with a number of signifi cant challenges.
Port of Antwerp
Napoleon Bonaparte ordered the construction of Antwerp’s fi rst lock and dock in 1811. Since that time, the port has seen considerable development and now operates 24 docks with a total port area of 12,068 ha. Recent development has focused on the creation of fast turnaround tidal berths, both on the Right Bank (Europa Terminal and the North Sea Terminal) and on the Left Bank (Deurganck Dock).
Port of Antwerp received its fi rst barrels of crude oil in 1861, and is now situated next to the largest cluster of petrochemical companies in Europe. The port now handles an annual volume of more than 223 million tonnes of maritime freight, and has become the largest integrated maritime, logistics and industrial platform in Europe.
In February 2021, the City of Antwerp and the City of Bruges reached an agreement to merge their respective ports following a unifi cation process that is expected to take one year. Thereafter, the ports will operate under the name ‘Port of Antwerp-Bruges’. In this way, the ports will strengthen their positions in the global logistics chain and perpetuate their sustainable growth.
Sustainability
The sustainability policy and business plan of the Antwerp Port Authority are built around fi ve of the United Nation’s core Sustainable Development Goals (SDGs): Good health & wellbeing; Decent work & economic growth; Industry innovation & infrastructure: Sustainable cities & communities, and Climate action. However, in 2019 over 100 employees participated in workshops to defi ne clear objectives and measurable performance indicators for all 17 SDGs, including for example, SDG 14: Conserve and sustainably use the oceans, seas and marine resources for sustainable development. The ambitions identifi ed by the workshops are being integrated into the port’s strategic plan.
Several initiatives are underway as Antwerp aims to be a climate- neutral port by 2050:
• The Solar Mirror Plant in Kallo on the left bank is generating green heat from concentrated sunlight – a practice that has never been applied in Europe before. Other renewable energy projects are underway, including biomass incineration and there are a growing number of wind turbines in the port area (currently 80). Together, more than 200 mW of energy is being produced from biomass and wind, which is enough to supply power to around 140,000 households per year.
• A ‘power-to-methanol’ project began in 2020, aiming to produce 8,000 tonnes of sustainable methanol annually by reusing captured CO2
hydrogen, which will reduce extra CO2 10,000 tons.
in combination with sustainably produced emissions by at least
• Collaborative efforts are seeking to establish ways in which hydrogen can be generated, imported, stored and transported as an essential component of a low-carbon ecosystem.
• Residual heat is being reused by industry, and by buildings in the port and the city.
• Port of Antwerp is also greening its fl eet by reducing energy consumption and commissioning the construction of a hydrogen-powered tug-boat and a methanol-powered tug-boat.
Regulatory environmental monitoring
Monitoring is undertaken jointly by the Port of Antwerp and Vlaamse Milieumaatschappij (VMM) the Flemish Environment Agency. There are no laboratories in the port, but water and sediment samples are collected on a monthly basis and tested in VMM and commercial laboratories. Water testing is conducted for a wide variety of parameters in compliance with the requirements of the EU Water Framework Directive (WFD).
Air quality is monitored at the port, with measurements taken for sulphur dioxide, nitrogen oxides, particulate matter, black carbon, ozone, volatile organic compounds and PCBs. These measurements are compared with both European standards and World Health Organisation recommended values.
Belgium has also ratifi ed the International Convention for the Prevention of Pollution from Ships (MARPOL), so it has a responsibility to enforce these regulations which cover accidental and operational releases of oil, noxious liquids, marine pollutants, sewage and garbage. MARPOL also covers emissions to air for SOx and NOx.
Non-regulatory environmental monitoring
Explaining the importance of environmental monitoring and intelligence, Environmental Services Manager Laura Verlaeckt
IET NOVEMBER / DECEMBER 2021
WWW.ENVIROTECH-ONLINE.COM iNose
says: “Our stated goal is to build Europe’s most sustainable port in harmony with society and the environment. To achieve this, in conjunction with our SDG ambitions, we need to fully understand current environmental conditions and the factors that affect them, so that we can improve our strategic decision-making and make informed investment decisions, for example.
“This means that we need to be able to continually monitor water, sediment and air quality and synthesise this data to derive actionable insights that improve our business. A number of important monitoring initiatives are therefore underway.”
In addition to regulatory monitoring, the VMM network of air quality monitoring stations is also able to help with the investigation of odour complaints. For example, in April 2021, raised levels of benzene were detected at the same time as several reports of odour nuisance. The benzene levels were not found to have breached safety levels, but the monitoring data is helping investigatory work to identify the source.
Air quality in the port and surrounding areas can be affected by degassing, loading or unloading ships, and from industrial process emissions or accidental releases. These emissions are a concern; not just because of health and safety, but also because of unpleasant odours. A network of ‘iNoses’ has therefore been installed around the port.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52