search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
TECHNICAL


The destructive nature of weathering plays a key role in regulating the size, shape and uniformity of the material, with the origins of the parent material influencing its chemical composition


turf industry and in particular golf has been seen as one of consumption, often leaving a large environmental footprint. Moving forward, does the continued reliance on a finite material such as sand help to address this image? And does it help to robustly position clubs and facilities to withstand future pressures, be these financial or legislatively, that are inevitably coming their way?


Fig. 10: Soil profile showing high levels of sand in upper layer


This allows for the manipulation of soil microbes and the humification of OM (Fig. 9), with this expediting the conversion of organic nutrients (thatch) into plant available inorganic form. This source of organic nutrients is always available to you, creating the correct environment for it to be utilised is key. Excessive levels of sand in your soil profile may well inhibit the development of the biological community you are dependent on (Fig. 10).


With the government recently committing the UK to achieving a net zero Carbon balance by 2050, all sectors will inevitably come under increased pressure to implement change. Rightly or wrongly, the


The conversation relating to how the turf sector is meeting its environmental responsibilities requires and deserves far greater scope than this article provides. However, it is fairly self-evident that the continued consumption of any material in large volumes, that often requires carriage over large distances, will not aid in reducing an organisation’s Carbon footprint. Regulating inputs of external consumable materials to sustainable levels whilst maintaining playing performance levels must be the long term goal. At times, the balance may not be easy to achieve, but in doing so the industry can position itself and its stakeholders on a path that is more aligned to that of other forward thinking sectors. So to summarize, sand does and will continue to play an important role in turf management. From enabling the utilisation of cutting edge technology to produce high quality pitches (Fig. 11) to refining surface


playing performance attributes, the value of sand is undeniable. In recognising its weaknesses as well as its strengths, you will utilise the material to its maximum. Excessive use over time will only aid in creating a biologically sterile growing environment. The incorporation of biological and organic inputs into your maintenance programme can help maintain equilibrium, one which allows you to harness the benefits of biological processes that have been the foundation of growing mediums throughout the evolution of the planet. At a time when the public’s awareness in the value of our natural world is growing and consequences of its degradation more widely understood, it is in the industry’s own interest to adapt and take a holistic approach to environmental stewardship. By utilising sand at a sustainable level, not only will it assist you in meeting your objectives, you will also be making your contribution to safeguarding the environment. One which will hopefully preserve this precious resource for future generations.


Thank you to Jim Dawson at Scottish Rugby and Scott Corrigan at Cawder Golf Club for their assistance in researching this article.


Derek is currently undertaking Post Graduate study at the University College Dublin in Environmental Sustainability


Fig. 11: BT Murrayfield stadium PC October/November 2019 143





Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164