This page contains a Flash digital edition of a book.
news digest ♦ Lasers


low-risk, comprehensive NGJ solution to the U.S. Navy. Raytheon also leveraged its GaN based AESA technologies to provide warfighters with enhanced electronic attack capabilities.


“Raytheon provided the U.S. Navy with an innovative and efficient design capable of jamming current and future threats,” adds Yuse. “Our technology approach met the program requirements and leveraged our industry team’s extensive experience in combat-proven, high-reliability agile-beam RF systems designed for demanding carrier-based aircraft environments.”


NGJ will replace the ALQ-99 tactical jamming system currently on the Navy’s EA-18G Growler tactical airborne electronic attack aircraft.


Raytheon’s Space and Airborne Systems business, based in McKinney, Texas, will lead the Technology Development phase of the NGJ program with collaboration from Raytheon facilities in El Segundo, California; Forest, Mississippi; Dallas, Texas; Fort Wayne, Indiana; Largo, Florida.; and Andover, Massachusetts.


telecom applications. We even have one of our sensors on NASA’s Mars Curiosity Rover’, say sAlfred Forchel, founder of Nanoplus, “We chose Oxford Instruments systems for their versatility, superior process capabilities and excellent customer support.”


Frazer Anderson, Business Group Director at Oxford Instruments concludes, “Our tools offer the ideal platform for production as well as research & development in many new application areas, and Laser Bar facet coating is just one of these. Our excellent process applications team and global service support ensure that our customers are supported in every respect and can count on their Oxford Instruments systems for maximum uptime and reliability.”


Optimising InGaAs metamorphic buffer for laser


diodes Using Laytec’s EpiCurve TT, NTT has improved it’s thin InGaAs buffer layer to exhibit lower thermal resistance


Lasers


Nanoplus orders Oxford Instruments tool for laser etching


The Ionfab300 Plus will be used for laser bar facet coating with anti-reflective and high-reflection multilayers, and the PlasmaPro System100 RIE system will be used for GaAs and InP compound etching


Oxford Instruments Plasma Technology (OIPT) has just received an order from Nanoplus in Germany for an ion beam deposition and a plasma etch system for use on novel types of semiconductor laser production.


Nanoplus produces semiconductor lasers over several wavelength ranges (some exclusively) for many different customers with a wide range of applications.


The Ionfab300 Plus ion beam deposition is a multi-batch cassette loading tool allowing many devices to be produced for several applications and various customers in one load. The Ionfab300 Plus will be used for laser bar facet coating with anti-reflective and high-reflection multilayers, and the PlasmaPro System100 RIE system will be used for GaAs and InP compound etching.


David Pearson, OIPT’s Senior Ion Beam Technologist, comments, “Our Ionfab optical coating tools are becoming the tools of choice for many types of precision optical coatings worldwide, in particular in laser applications.”


“Nanoplus is an internationally leading supplier of single mode DFB lasers for sensing, metrology, spectroscopy and


110 www.compoundsemiconductor.net August/September 2013


Temperature characteristics of laser diodes (LDs) on a GaAs substrate depend on the quality and the thermal resistance of the InGaAs metamorphic buffer layer.


Ryo Nakao from NTT used LayTec‘s in-situ metrology system EpiCurve TT to improve layer thickness and indium content in order to fabricate a thin InGaAs metamorphic buffer with low thermal resistance.


The in-situ tool helps understand the MOCVD growth conditions and shows the changes in wafer curvature caused by residual strain during MOCVD growth.


Fig. 1: In-situ curvature data of InGaAs buffer and quasi- InGaAs substrate on GaAs substrate


Fig. 1 shows in-situ curvature data for a 1250 nm metamorphic InGaAs buffer layer and a quasi-InGaAs substrate layer. The growth can be separated into 3 parts: I - Coherent (pseudomorphic) growth of the buffer, II - Growth with relaxation, III - Free-standing (unstrained) growth.


During relaxation, the in-plane lattice constant of the In0.12Ga0.88As layer increases. After the buffer has reached 1250 nm, its lattice constant exactly matches the lattice


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178
Produced with Yudu - www.yudu.com