This page contains a Flash digital edition of a book.
SUNNYSIDEUP


The sun can reduce a soldier’s load


A consortium of companies and universities has been given a grant to develop solar powered personal


infrastructure for soldiers on the move.


46


revolutionary type of personal power pack now in development could help troops when they are engaged on the battlefield. With the aim of being up to fifty per cent lighter than conventional chemical battery packs, the solar and thermoelectric-powered system could make an important contribution to future military operations.


A


The project is being developed by the University of Glasgow with Loughborough, Strathclyde, Leeds, Reading and Brunel Universities, with funding from the Engineering and Physical Sciences Research Council (EPSRC). It is supported by the Defence Science and Technology Laboratory (Dstl).


The system’s innovative combination of solar photovoltaic (PV) cells, thermoelectric device and leading-edge energy storage technology will provide a reliable power supply round-the-clock, just like a normal battery pack. The team is also investigating ways of managing, storing and utilising heat produced by the system.Because it is much lighter, the system will improve soldiers’ mobility. Moreover, by eliminating the need to return to base regularly to recharge batteries, it will increase the potential range and duration of infantry operations. It will also absorb energy across the electromagnetic spectrum, making infantry less liable to detection by night vision equipment that uses infra-red technology, for instance.


Minister for Universities and Science David Willetts said: “The armed forces often need to carry around a huge amount of kit and the means to power it. It’s great that specialists from a range of


science disciplines are coming together to develop lighter, more reliable technology that will help to make life easier for them in the field.”


Although substantial research into solar power for soldiers has already been conducted worldwide, this new UK project differs in its use of thermoelectric devices to complement solar cells, delivering genuine 24/7 power generation capability. The project team is also investigating how both types of device


could actually be woven into soldiers’ battle dress, which has never been done before. During the day, the solar cells will produce electricity to power equipment. During the night, the thermoelectric devices will take over and perform the function. The system will also incorporate advanced energy storage devices to ensure available energy. “Infantry need electricity for weapons, radios, global positioning systems and many other vital pieces of equipment,” says Professor Duncan Gregory of the University of Glasgow. “Batteries can account for over ten per cent of the 45-70kg of equipment that infantry currently carry. By aiding efficiency and comfort, the new system could play an extremely valuable role in ensuring the effectiveness of army operations,” Gregory went on to conclude.


PV cells, thermoelectric devices and advanced energy storage devices are already widely used in a range of applications. A key aim of the project team, however, is to produce robust, hard-wearing designs specifically for military use in tough, hostile conditions. To tackle the many challenges that the project presents, the team includes specialists from a wide range of disciplines including chemistry, materials science, process engineering, electrical engineering and design. Feedback from soldiers will also play a crucial role in optimising the power system for front-line use.


“We aim to produce a prototype system within two years,” says Professor Gregory. “We also anticipate that the technology that we develop could be adapted for other and very varied uses. One possibility is in niche space applications for powering satellites, another could be to provide means to transport medicines or supplies at cool temperatures in disaster areas or to supply fresh food in difficult economic or climatic conditions”. The project will receive total EPSRC and MOD funding of just over £650,000. In addition to this finding, the University of Leeds and Brunel University are also providing financial support, and communications and avionics electronics company Rockwell-Collins are supporting a studentship which will contribute to the project.


© 2011 Angel Business Communications. Permission required.


www.solar-pv-management.com Issue IV 2011


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48