search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Work Rollers—New straighteners processing AHSS mate-


rials require a greater number of smaller diameter work rollers with closer spacing between the rollers to effectively stretch and compress the material. These smaller diameter straight- ener rollers provide a smaller radius around which to bend the material. This is because AHSS needs to be bent more severely in order to exceed its higher yield point. Force Delivery—Closer work roller center spacing leaves less room for the work roller force delivery mechanism. Conventional “off- the-shelf” screw jack designs cannot provide adequate force in this reduced space. COE’s experience led to the development of custom screw jack modules, which can be designed to fi t the available space and deliver the higher forces required to effectively yield AHSS. The straightener must also be designed so the upper rolls have adequate travel between the lower fi xed rolls in order to properly yield AHSS. This distance can be as much as 50–60% greater than what is required for conven- tional straighteners. System Rigidity—Greater forces require more support.


So across the machine width, the straightener work rollers must be supported better to prevent excessive defl ection that can lead to edge wave in the material and failure of the straightener geartrain. The backup structural bridges that support the straightener work rollers must be more rigid. Robust Components, Size and Durability—Although the


work rollers are smaller, there is a tendency for many of the support mechanisms to be larger. For example, wider gear face widths are required as well as outboard support of jour- nals and idler shafts in order to produce higher gear power ratings. Larger journal diameters with bigger radii and larger bearing capacity are needed to withstand the greater roll force and higher power required to straighten high strength material using the closer roller center spacing. More Horsepower—Processing of AHSS typically requires


greater motor power and torque capability to effectively process the material through the straightener. Calculating the


correct power is based on numerous factors, including: t Material thickness, width, and yield strength t Maximum coil weight the straightener is required to pull off


t Required processing speed of the coil feed line t Response/acceleration time of the straightener


Each application has unique considerations of the above variables and can result in an almost infi nite number of outcomes based on the combinations of these variables. To


COE’s HD straightener design modifi cations overcome the diffi culties that stampers face in trying to achieve the required material fl atness when processing AHSS.


properly design a straightener for any particular application requires tools that can analyze these requirements.


The Right Tools for the Job From its research, COE developed its HD Series of Heavy-Duty Straighteners specifi cally meant to tackle the processing of AHSS. These straighteners incorporate all of the necessary design and structural features demanded by these new materials. They are also capable of processing a wider range of materials—both thick and thin—than conven- tional straighteners. The success of the HD Series has now led the COE’s Research & Development team to expand the application of the technology into new product offerings. Having solution alternatives that are designed to address the challenges of today’s AHSS steels at up to 1000+ MPa removes the anguish of specifying equipment for both engineering and operations personnel alike. From an engineering viewpoint, the properly designed equipment will be capable of effectively straightening and feeding these advanced materials. From an operations viewpoint, rates of production and production effi - ciency will be improved. And, more importantly, these enhanced capabilities will allow companies to confi dently procure and process more automotive work using these advanced steels.


63 — Motorized Vehicle Manufacturing 2016


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224