This page contains a Flash digital edition of a book.
can be simple and affordable, but have less strength than RSW. And, in most cases, mechanical joining techniques are combined with adhesive bonding to increase the static and fatigue strength of joints and prevent corrosion of joints caused by the contact between the dissimilar metals. Although RSW is the typical strategy for joining steel stampings together into a completed body, it has been problematic when applied to aluminum. Additionally, when applying RSW to the joining, dissimilar materials present numerous challenges. Issues can appear due to different melting points, different chemical structures, the formation of intermetallics and corrosion problems.


Friction Welding Offers an Alternative Friction welding, a type of solid-state


joining, creates mechanical friction between workpieces in relative motion to one another, heating the materials until they reach a plas- tic state (nonmelting) at the joint interface. The materials are then forged together by force, creating a joint. It offers numerous benefi ts over other joining techniques including elimination of fi ller metal or fl ux, higher quality joints, a very small heat affected area, and no coarse grain formation. A proven joining methodology, friction welding can be applied as friction spin (or rotary) welding, linear friction stir welding (LFSW or FSW) or refi ll friction stir spot weld- ing (RFSSW), as well as multiple variants of each approach. While most rotary friction welding is used on round, sym- metrical parts, linear friction stir welding and RFSSW allow solid-state welds on a wider range of part geometries. A major advantage of friction welding is that it allows dis- similar materials to be joined. In fact, nearly half of the welds made through friction welding are for joining of dissimilar materials. Normally the wide difference in melting points of the two materials would make it impossible to weld using tra- ditional techniques, and would require some sort of mechani- cal connection. Friction welding provides a “full-strength” bond with no additional weight.


As a variant of friction stir welding, RFSSW has become a focus as a solution for spot welding aluminum and dissimilar materials. It shows great potential to be a replacement of single- point joining processes like resistance spot welding and riveting.


Refi ll friction stir spot joining is similar in principal to LFSW, although generally applied as a joining technology for overlap- ping or stacked sheet material. Both techniques use a rotating tool with a specially designed pin and shoulder. However, with LFSW the tool travels along a seam between two metal plates versus the tool staying in one spot in friction spot joining. Coldwater Machine fi rst began development of its friction welding solutions in 2003, originally developing and integrat- ing friction spin welding solutions. Since then, it has designed


A panel of SpotMeld sample welds.


dozens of its SpinMeld systems for installation at a variety of Tier suppliers and OEMs in both automotive and nonautomotive markets. Given the increasing use of lightweight materials, and especially aluminum in automotive body applications, Coldwater has applied this friction welding experience to the challenge of spot welding of aluminum and dissimilar materials.


Developments in Refi ll Friction Stir Spot Welding In 2014, the SpotMeld RFSSW solution, based upon technology developed and patented by Helmholtz-Zentrum (Geesthacht, Germany) was announced. For integration of the technology into high-production environments, Coldwater con- tinues to partner with the Helmholtz Institute and weld-head provider Harms & Wende. SpotMeld uses a three-piece tool to join two or more faying surfaces. Basically, heat is generated between the tool and materials being mated to create a soft, plastic-like region. Coldwater has had success in spot welding aluminum (1000–7000 series), magnesium, nonferrous and dissimilar sheet materials, making SpotMeld a viable alternative to single-point joining processes like resistance spot welding, laser welding and riveting.


65 — Motorized Vehicle Manufacturing 2016


Images courtesy of Coldwater Machine Co.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224