This page contains a Flash digital edition of a book.
Technical


So, let’s look at the soils that host the biology. Firstly, soil needs to be aerobic to harbour healthy soil biology. If the soil smells - contains anaerobic blacklayer - then this needs to be addressed. This is Mother Nature’s way of telling you that the soil is biologically poor. And, if our soils are biologically poor, thatch will not degrade into organic matter and humus, organic nutrients will not convert into available plant food; disease pathogens will take advantage and the grass plant will suffer. So, the first port of call is to address the anaerobic problem. I still believe in the old ways, and I believe that the way we manage our soils has a direct impact on the plants we grow. This philosophy has been tried and tested since the time we started to grow plants. The only difference now is that we have more of an understanding of our soils and, as a result, we have the soil food web.


What function do the different species undertake?


Bacteria: This single celled organism is a prolific reproducer. What it lacks in size it makes up for in numbers - one billion bacteria per teaspoon of healthy soil. It feeds on simple carbohydrates (sugar) and has an association with annuals, including Poa annua. Sugar based bio- stimulants, like molasses, will feed bacteria.


The Benefits/Actions of Bacteria - Decompose simple organic matter


- Recycle, solubilise and retain nutrients in the rootzone


- Protect the plant from disease


- Produce by-products that promote plant growth (enzymes, vitamins, hormones)


- Support Poa Annua Obviously, with all the food the


protozoa consume, they produce waste. This waste is excreted as NH4 (ammonium), which is then available to the plant. They are also an important food source for other soil organisms like earthworms and beneficial nematodes. So, for nutrient recycling, protozoa is king.


Bacteria will reproduce at a massive rate, it’s relatively easy to produce and encourage - aeration and some simple carbohydrates will soon see them appear in abundance.


Fungi: Fungi is very different. This has an association with perennial plants like Fescue Bents and Rye. Fungi prefer complex carbohydrates, like organic matter, lignin, seaweed, humic acid and fish hydrolosate. Fungi take longer to naturally recolonise than bacteria. A bit like the grass it is associated with.


The Benefits/Actions of Fungi - Decomposing thatch


- Nutrient cyclers


Nematodes: Nematodes get a bad press, but they are, in fact, very beneficial. Nematodes are microscopic worms. Like all worms, they move through the soil making channels, eating and reproducing as they go. There are around 20,000 different species that are known, however there are four different types:


- Bacterial feeders - Fungal feeders - Root feeders (Parasitic) - Nematode feeders (Predatory)


Like protozoa, nematodes play an important role in releasing nutrients in plant available form. So, why do nematodes get such bad press. This is because we have an imbalance in the soil. Root feeders are the problem, sucking all that sugary goodness out of the roots. In healthy soil you will find thousands of nematodes of all different types. However, in unhealthy soil, you will only


find rootfeeders. Predatory nematodes will normally keep rootfeeders under control, they love the sugary rootfeeder, they will eat them over any other type. If the rootfeeder has no predators, it is left alone to continue chomping away at our root system


- Soil structure builders - Plant protectors - Support perennial plants


Fungi is more fragile and susceptible to chemicals and high salt fertilisers. But, once established, they have many more benefits.


Protozoa: Protozoa are single-celled animals that feed primarily on bacteria, other protozoa and soluble organic matter. These play an important role in nutrient cycling, due to their fantastic appetite. One protozoa will eat 10,000+ bacteria each day, for example.


Predatory Nematode eating a rootfeeding nematode


Biostimulants


So, what biology do you want to stimulate?


Bacteria = association with annual plants = stimulate with simple carbohydrates, molasses


Fungi = association with perennial plants and grasses = stimulate with complex carbohydrates = humic, seaweed, organic matter etc.


Scientifically, we know so much more


now. We know the operations and benefits of bacteria, different fungi, protozoa, nematodes etc. For me, it’s all about creating a healthy balance and a diverse ecosystem. In the real world of greenkeeping, we need salty inorganics at times, we need chemicals, inert sand dressings/sandy soils and, of course, compaction; not great for our ecosystem! Compost tea is simply a great tool to apply biology, then we can feed the biology with the correct biostimulant, we can reduce the chemicals, salt fertilisers and aerate sensibly… then we can keep the ecosystem. Many are enjoying great success by bringing life back to the soils and working with nature.


Biologically poor rootzone


Paul Lowe, Symbio. Email: Paul@symbio.co.uk


DECEMBER/JANUARY 2012 PC 129


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156