This page contains a Flash digital edition of a book.
E-305
::
EXPERIMENTS Conservation of mechanical energy during a free fall
the timer tape, one can find for each mark both how far
the weight has fallen from the initial position as well as
the speed of the weight at the moment in question.
The first portion of the timer tape could look as follows
after a typical experiment.
Figure 1
It is apparent that the distance between the marks incre-
ases as the speed of the falling weight increases. For
each of the selected points on the tape two distances L

and s should be measured as illustrated in figure 2

s
Figure 2
L
In order to determine the speed of the weight at a parti-
cular point one can use the fundamental definition of
∇ ∇ ∇
speed: v = s/ t, where s is the distance through

which the weight has traveled in the time interval
t.
For a given mark on the tape using the distance from the
previous mark to the following mark corresponds to a
time interval of 0.02 seconds
2
. The speed is thus given

by v = s/0.02 s.
For each of the selected marks on the timer tape the
potential energy E
pot
and the kinetic energy E
kin
can be
determined.
Purpose
In this exercise the conservation of mechanical energy
during a free fall is studied.
the mechanical energy can be written as
Theory
The total mechanical energy of an object is determined
by the sum of its potential energy and its kinetic energy
The potential energy can be set equal to zero at the initial
position of the weight. Thus the potential energy will be
negative during the fall, while the kinetic energy will
increase due to the increase in speed. The sum of the
In this experiment we will consider the kinetic energy to
potential and the kinetic energy should thus remain close
be equal to zero when the accelerated mass is at rest
to zero.
(v = 0). The zero point of the potential energy will be the
position of the accelerated mass just before it is re-
leased. As the potential energy decreases (becomes
negative) during the fall of the mass, the kinetic energy
1 This is only true for an AC (mains) frequency of 50 Hz.
will increase (becomes positive) by – ideally – the same
If the frequency is 60 Hz the correct number is 1/120.
amount, so that the total mechanical energy should
equal zero. In practice some energy losses due to fricti-
2 For 60 Hz mains frequency the time interval is 0.01667 seconds.·
on, air resistance, etc. will be observed.
By letting a weight pull a timer tape through a timer, the
timer can place a mark on the tape every 1/100 of a
second
1
and by selecting a number of marks (e.g. 20) on
®
Science Equipment for Education Physics
Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200
Produced with Yudu - www.yudu.com