RESEARCH I MATERIALS
“This is a new approach to broadband light absorption. The use of whispering gallery resonant modes inside nanoshells is very exciting,” said Yan Yao, a post-doctoral researcher in the Cui Lab and a co-lead author of the paper. “It not only can lead to better solar cells, but can be applied in areas where light absorption is important, such as solar fuels and photo-detectors.”
Thick and thin
In measuring light absorption in a single layer of nanoshells, the research showed significantly more absorption over a broader spectrum of light than a flat layer of the silicon deposited side- by-side with the nanoshells.
“The nanometre spherical shells hits a sweet spot and maximize the absorption efficiency of the film. The shells both allow light to enter the film easily and they trap it so as to enhance the absorption in a way larger-scale counterparts cannot. That is the power of nanotechnology,” said Jie Yao, a post-doctoral researcher in Cui’s lab and co-lead author of the paper.
Further, by depositing two or even three layers of nanoshells atop one another, the team teased the absorption higher still. With a three-layer structure, they were able to achieve total absorption of 75 percent of light in certain important ranges of the solar spectrum.
Clever structure
Having demonstrated improved absorption, the engineers went on to show how their clever structure would pay dividends beyond the mere trapping of light.
“A micron-thick flat film of solid nanocrystalline-silicon can take a few hours to deposit, while nanoshells achieving similar light absorption take just minutes,” said Yan. The nanoshell structure likewise uses substantially less material, one-twentieth that of solid nanocrystalline-silicon.
Shanhui Fan, an associate professor of electrical engineering at Stanford and co-author of the paper. “Both have been challenges for other types of thin solar films.”
The downfall of nanocrystalline-silicon, however, has been its relatively poor absorption of light, which requires thick layering that takes a long time to manufacture.
Whispering galleries
The engineers call their spheres nanoshells. Producing the shells takes a bit of engineering magic. The researchers first create tiny balls of silica and coat them with a layer of silicon. They then etch away the glass centre using hydrofluoric acid that does not affect the silicon, leaving behind the all-important light-sensitive shell. These shells form optical whispering galleries that capture and recirculate the light.
“The light gets trapped inside the nanoshells,” said Yi Cui, an associate professor of materials science engineering and a senior author of the paper. “It circulates round rather than passing through and this is very desirable for solar applications.”
The researchers estimate that light circulates around the circumference of the shells a few times, during which energy from the light gets absorbed gradually by the silicon. The longer the shells can keep the light in the material, the better the absorption will be.
“A twentieth of the material, of course, costs one-twentieth and weighs one-twentieth what a solid layer does,” said Jie. “This might allow us to cost-effectively produce better-performing solar cells of rare or expensive materials.”
“The solar film in our paper is made of relatively abundant silicon, but down the road, the reduction in materials afforded by nanoshells could prove important to scaling up the manufacturing of many types of thin film cells, such as those which use rarer materials like tellurium and indium,” said Vijay Narasimhan, a doctoral candidate in the Cui Lab and co-author.
Finally, the nanoshells are relatively indifferent to the angle of incoming light and the layers are thin enough to bend and twist without damage. These characteristics might open up an array of new applications in situations where achieving the optimal incoming angle of the sun is not always possible. Imagine solar sails on the high seas or photovoltaic clothing for mountain climbing.
“This new structure is just the beginning and demonstrates some of the exciting potentials for using advanced nanophotonic structures to improve solar cell efficiency,” said Shanhui Fan.
© 2012 Angel Business Communications. Permission required.
Issue II 2012 I
www.solar-international.net 25
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40