This page contains a Flash digital edition of a book.
Materials Handling


due to their high silica content. They are highly abrasive, causing problems of wear and erosion with the equipment used to treat and process the sludge: equipment such as pipework, augers, screw casing, mixers, blenders, driers, separators, screens, centrifuges, mechanical conveyors, presses, driers, ducting, filters housings, fans and fan casings. All of this equipment can benefit from wear protection


in order to deliver overall systems that reduce erosion and cavitation and improve material flow. However, a survey by wear protection specialist, Kingfisher Industrial, has found that wear protection isn’t optimised to its full benefit, and that water industry awareness of the cost and operational benefits of wear protection in the processing of wastewater and sludge is minimal.


with many installations benefiting from wear life of up to 20-years following appropriate wear treatment. “It is far more profitable for companies in continuous process industries to employ suitable wear protection than having to provide maintenance and repair of equipment at regular intervals, due to problems associated with wear and corrosion,” said John Connolly. “Reduced maintenance means reduced risk, reduced cost and generates more production uptime over longer periods – all of which are critically important to improve the efficiencies of companies that operate 24/7.” Wear protection can be employed at any time in the life of


a process system. However, if a system is designed with wear protection from its conception, then overall equipment costs can usually be reduced, as the system chosen to protect the equipment can often remove the requirement to manufacture components using heavier grades of material. Take a pipeline, for example: if a wear protection lining


system is used, then the user can specify thinner walled pipe, as the lining will provide the protection. This might mean 5mm wall thickness for the pipe rather than 10mm, with a commensurate 50 per cent saving in cost. This downsizing is possible because the pipework becomes


a carrier for the wear resistant lining, the synergy of the two meeting the requirements for pressure, temperature and wear protection.


Maintenance requirements A process plant that is equipped with a well designed wear protection system also offers additional benefits, in that the process operator has little or no maintenance requirements over the lifetime of the installation. This means no ongoing cost problems of interruptions to production as a result of


Fig. 2. A process plant that is equipped with a well designed wear protection system requires little or no maintenance over the lifetime of the installation.


“We have identified that the vast majority of waste and water treatment plants depend on the use of heavier grades of stainless steel to counter both the corrosive and abrasive effects of handling and treating waste water and sludge,” said John Connolly, MD of Kingfisher. “In an attempt to improve the life expectancy of critical plant and equipment, some processors have utilised polymeric composites and glass flake coatings, which can be applied by brush, trowel or be sprayed on. They have also undertaken the process of applying hard metal deposits by means of traditional welding methods and, albeit these processes are in some instances suitable, they are by no means an ideal fit for many areas of the process. In some instances, these methods of protection have extended the service by an improved margin; however, they do not eradicate the continual problems experienced in many applications. Overall, we think that these problems are the result of the EFW process being so new; hence, the awareness of suitable technology solutions to reduce wear and corrosion, cut maintenance costs and optimise the whole life costs of plant is limited.” Kingfisher has calculated that, on average, users of its


wear protection systems – Polymer, Ceramic and Metallic - benefit by a factor of at least five times their initial outlay,


26 www.engineerlive.com Fig. 3. Sewage contains 10 times the amount of energy needed to treat it.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52