This page contains a Flash digital edition of a book.
Guide to Casting and Molding Processes


Understanding the metalcasting basics can help you design for manufacturability and utilize processes that meet your specific requirements. An MCDP Staff Report


and component users flexibility in their metalforming needs (Fig. 1). Each process offers advantages when


T


matched with the proper alloy and applica- tion. When reviewing these processes and determining which best suits your needs, consider the following: • required surface quality; • required dimensional accuracy; • type of pattern/corebox equipment; • cost of making the mold(s); • how the selected casting process will affect casting design. Molding processes can be broken into


four general categories: • sand casting processes; • permanent mold processes; • ceramic processes; • rapid prototyping. Following is a look at the most common


casting processes.


SAND CASTING PROCESSES Fundamentally, a mold is produced by


shaping a refractory material to form a cavity of desired shape such that molten metal can be poured into the cavity. The mold cavity must retain its shape until the metal solidifies


he versatility of metalcasting is


demonstrated by the number of casting and molding processes currently available. This range of choices offers design engineers


In the nobake molding process, refractory sand is coated with binder and a liquid catalyst. As the binder and catalyst combine, a chemical reaction hardens the sand. Shown above is the application of the refractory coating.


and the casting is removed. Depending on the choice of metal, certain characteristics are demanded of the mold. When granular refrac- tory materials, such as silica, olivine, chromite or zircon sands, are used, the mold must be: • strong enough to sustain the weight of the molten metal;


• constructed to permit any gases formed within the mold or mold cavity to es- cape into the air;


• resistant to the erosive action of molten


metal during pouring and the high heat of the metal until the casting is solid;


• collapsible enough to permit the metal to contract without undue restraint during solidification;


• able to cleanly strip away from the cast- ing after it has cooled;


• economical, since large amounts of refractory material are used.


Green Sand Molding The most common method used to


make metal castings is green sand mold- ing. In this process, granular refractory sand is coated with a mixture of bentonite clay, water and, in some cases, other ad- ditives. The additives help to harden and hold the mold shape to withstand the pressures of the molten metal. The green sand mixture is compacted


This automated molding loop is used to produce nobake molds. The loop is among the largest in production in North America.


by hand or through mechanical force around a pattern to create a mold. The me- chanical force can be induced by slinging, jolting, squeezing or by impact/impulse. The following points should be taken


into account when considering the green sand molding process: • for many metal applications, green sand processes are the most cost-effec- tive of all metal forming operations; • these processes readily lend themselves to


6 Metal Casting Design & PurChasing 2010 Casting sourCe DireCtory


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192