This page contains a Flash digital edition of a book.
techview Jonathan Chomicz


Raising Effi ciency Levels in the Machining of Blisks


A


ccording to the energy effi ciency report from the German Airline Association (the Bundesverband der Deutschen Luftverkehrswirtschaft), a modern


airplane uses just three liters of fuel per passenger per 100 km of fl ight route. The consumption level has been falling for years now, made possible by a multitude of measures includ- ing designers developing increasingly effi cient jet engines consisting of high-performance material components. This development poses a challenge to the mechanical engineer- ing industry closely connected with aircraft production as aerospace manufacturers are on the lookout for new manu- facturing solutions to ensure the effi cient machining of central engine components such as blisks and single blades. The number of blisks required by the aircraft industry is rising steadily. Larger engines now feature a number of blisk stages in their compressors. To ensure that these key components can withstand the extreme temperatures gener- ated, they are made of very hard, heat-resistant materials such as nickel-based alloys (Inconel) or titanium aluminides. Many well established conventional machining processes are pushed to their economic limit as the increasing hardness of the material reduces the life expectancy of expensive milling tools and thus raises production costs. There are other chal- lenges too. The conventional machining of superalloys pro- duces higher temperatures that have a negative infl uence on the material’s structure and endanger the process integrity. What alternative machining strategies are available that guarantee the effi cient processing of blisks? A system- atic, detailed answer is provided by a new study from the Fraunhofer-Institute for Production Technology and the ma- chine tool laboratory of the RWTH Aachen University. Their specialists compared different blisk machining strategies— from multiaxis milling combined with polishing to high-pres- sure waterjet cutting combined with precise electrochemical metal removal (PECM) fi nishing. It became clear that even with an annual production of just 800 nickel-based HPC- blisks the unit cost can be reduced by 50% compared to conventional machining methods as long as the right alterna- tive strategy is chosen. Noteable is that they concluded that


ECM/PECM Technology Specialist EMAG LLC


Farmington Hills, MI


the best methods cannot succeed without PECM fi nishing. Inclusion of the electrochemical process makes the material especially smooth and ensures that tool wear is minimal.


ECM makes material smooth and ensures minimal tool wear.


During the electrochemical process an electrolyte solution passes between the workpiece (the positive anode) and the tool (the negative cathode). This removes metal ions off the workpiece. The shape of the cathode—i.e., the tool with its active, conductive sectors—ensures that the removal of the material from the workpiece will achieve the desired compo- nent contour. This results in the best possible surface quality without burr formations, without changing the material struc- ture and with low roughness values. Subsequent refi nement processes on the blades, such as barreling, are noticeably shorter or may, in certain cases, even become unnecessary. Either result provides a vital reduction in unit costs. The PECM technology from EMAG represents a targeted development of the successful, basic electrochemical ma- chining (ECM) principle. In this case, the gap between work- piece and tool, through which the electrolyte solution passes, is particularly narrow. At the same time, the feed rate for the electrolyte is overlaid by a mechanical, oscillatory movement. In combination, these two factors provide for more effective and accurate material removal, which results in the economic advantages identifi ed by the machine tool laboratory of the RWTH Aachen University. For years the appropriate engineering technology has


been provided by EMAG ECM GmbH—the technology center for electrochemical machining and part of the EMAG Group. EMAG provides two sizes of PECM machines: the compact model PO 100 SF, for the complex machining of single turbine blades, and the larger model PO 900 SF for the machining of complete, and consequently much larger, disks of up to 900-mm diameter and a maximum weight of 500 kg. Aero components produced by a number of North American companies have already entered the qualifi cation phase.


45 — Aerospace & Defense Manufacturing 2015


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284  |  Page 285  |  Page 286  |  Page 287  |  Page 288  |  Page 289  |  Page 290  |  Page 291  |  Page 292  |  Page 293  |  Page 294  |  Page 295  |  Page 296  |  Page 297  |  Page 298  |  Page 299  |  Page 300  |  Page 301  |  Page 302  |  Page 303  |  Page 304  |  Page 305  |  Page 306  |  Page 307  |  Page 308  |  Page 309  |  Page 310  |  Page 311  |  Page 312