search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
MODELLING AND SIMULATION


In silico heaven


GEMMA CHURCH INVESTIGATES HOW SIMULATION AND MODELLING ARE HELPING EXPEDITE THE DEVELOPMENT OF CUTTING-EDGE MEDICAL DEVICES


Every device needs to work seamlessly in its operating environment. But when that environment is a human body, things get complicated. Our bodies are complex and unique systems where the safety and longevity of any medical device must be guaranteed. That’s why we need to integrate modelling and simulation when designing and developing today’s medical devices, to not only help us expedite their time to market, but also effectively personalise such devices and the treatments they can administer. Thierry Marchal, global


industry director of healthcare, sports, construction and consumer products at Ansys, said: ‘Human variability is a huge challenge for the healthcare industry. Clinical testing is only conducted on a few thousand patients at most, but when these medical devices go to market, they’re available for potentially billions of patients. The sample of


people used in a clinical trial is therefore just a model of the entire population and, like any model, it has its limitations, and it often happens that despite a successful clinical trial, the treatment will fail, or worse deteriorate the condition of the patient.’ As a result, we need to


complement traditional in vivo testing (such as testing on a living animal or human) or in vitro testing (testing performed on the bench) with a new approach, which is commonly called an ‘in silico’ trial. In silico simply references the silicon chips needed to run the necessary computer simulations and models that are now increasingly used to help develop our medical devices.


By using an in silico


approach, trial times can be reduced significantly to deliver cutting-edge devices to patients, a critical factor for the healthcare industry. During a speech at the European Parliament in


24 Scientific Computing World October/November 2019


September last year, Michael Hill, VP of R&D at Medtronic, claimed that using computer models to get one of its new pacemakers approved allowed them to release the product two years in advance, giving them the opportunity to treat 10,000 patients during these two years and saving $10m by reducing the number of patients involved in clinical trial by 256. In silico technologies also


pave the way for a more personalised healthcare system. Marchal said: ‘Testing any medical device on a virtual human, or digital twin, can be done very early in the product development process


without the need for formal approval, contrary to any in vivo testing or the need to create a physical prototype. Testing a concept early gives the designers more freedom to adjust the design, boost the performance and minimise the risk of failure during its lifecycle. ‘This approach is also more


ethical, as most products are extensively tested on a computer with great reliability, rather than taking the risk to injure an animal or a person during a clinical trial,’ Marchal added. Dassault Systèmes is


developing virtual human models to evaluate medical


@scwmagazine | www.scientific-computing.com


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36