This page contains a Flash digital edition of a book.
Lab Automation


Collaborative robots are redefining lab automation


The use of robots to automate high-volume repetitive tasks has been common practice going back to the early 1970s, when the German company KUKA developed and deployed the first electromechanical industrial robot. Subsequently, the world began replacing human effort in high-volume repetitive workflows with robots to reduce cost and/or improve productivity. Today robots are both big business and a big focus of discussion. The global robotic systems market (including software peripherals and other related costs) was estimated at $26 billion in 2012, according to IFR and the global industrial robot market is estimated to reach $41 billion by 2020, according to Allied Market Research1.


F


rom automotive assembly lines to materials handling to drug discovery, industrial robot penetration has grown steadily over the last few decades, recently showing strong signs of acceleration. It took 50 years to reach the first one million installed industrial robot units but only eight years to reach the second million units2. These traditional industrial robots have specific characteristics and limitations which have heavily influenced both the types of applications in which they have been used and the overall system approach to robot deployment. However, recent advances in robot technology are going to change the breadth of applications suitable for robots and alter how we think about robotic integration. For researchers in the drug discovery and development space, these advancements will open up many new possible ways of thinking through automation, delivering high productivity gains and ultimately reducing drug discovery costs.


Drug Discovery World Fall 2017


Traditional industrial robots When most people think of robots in industrial set- tings, they picture something like an automotive assembly line, with numerous large and imposing robots moving quickly and repetitively to perform high-volume tasks. Modern versions, such as the production line shown overleaf, seem futuristic, but are essentially just modestly altered extensions of the industrial robot system model that has been in use for years, and is ultimately governed by the characteristics and limitations of the industrial robots themselves. These robots are typically strong, fast and unintelligent. They excel at simple, repetitive tasks and are highly effective in the right context. However, they have little ability to react to events and, as such, require significant initial set-up and guarding. A human wandering into a line of industrial robots faces real danger, as the industrial robot will not stop moving just because a person is in the way. Couple this with their high payload, and


By Peter Harris


65


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72