search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
TESTING & MEASUREMENT  Analog Devices


Figure 2 – A 4-bit synchronous counter with LTC6990 output as its clock input


The example Verilog code shows a function that can be used to count the number of periods by using a single GPIO input on an FPGA. The larger the acquisition period, the more accurate the measurement will be. In the case of the following code, a 16-bit counter is used to provide additional resolution. This also assumes the logic that controls the measurement acquisition time is performed at a higher level in the architecture.


Figure 3 – Example Verilog code CLK_IN input.


If the FOUT of the LTC6990 is used as the input clock, then the counter will increment every time a rising edge on FOUT is detected, creating a period counter. If the time interval between each measurement is constant, then the number of periods within a given time interval can be counted and frequency can be


 or a lookup table.


By dividing the acquisition time TAcquisitions


by the number of periods counted, we get the period of FOUT. Taking the inverse of this relationship results in Equation 6.


CONCLUSION In this application, a new type of temperature- to-frequency converter is discussed. It provides an accurate, low cost method to measure temperatures. If the temperatures exceed the industrial range of –40°C to +125°C, a thermocouple can be installed at the inputs of the sensor. As a conclusion, the following plot shows the error of the measurement system. It demonstrates the linear relationship between the ambient temperature and the output frequency as well as the accuracy of the system.  temperature resolution result, for applications where roughly ±2°C error is acceptable, this provides a cheap and simple interface for measuring temperature. Additionally, the concept of using a voltage-to-frequency converter can be adapted to measure other types of transducer outputs without the need for an ADC.


Analog Devices www.analog.com


Transfer function of the temperature-to-frequency converter www.irish-manufacturing.com


Figure 5 – Temperature error Irish Manufacturing May 2023 27


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38