PC-JUN24-PG31.1_Layout 1 13/06/2024 11:48 Page 31
TRANSDUCERS, TRANSMITTERS & SENSORS
PROTECTING PEOPLE AND PRODUCTS
In this article, Jeremy Ohse at industrial heater, temperature sensor, and controller manufacturer, Watlow, explores best practice and considerations for high-limit safety sensors
High-limit safety sensors are a critical part of heating systems, maintaining the temperature setpoint
circulation heater may have several safety sensors to help identify failures in different sections of the heater. This approach allows operators to identify potential issues before they become a bigger problem. While the primary sensor and safety sensor are often two separate physical objects, they both plug into a single heater controller. Just as there could be a failure in the sensor, there could be a failure inside the heater control. If the heater controller is agency certified (UL, CE, or ETL), it’s likely there are two independent micro- controllers inside the heater control box, one for the primary thermal loop and one for the safety loop. This second safety micro-controller is an important often forgotten about distinction when selecting a heater controller. Look for the agency marking and enquire with the
lectrical heating systems have several safety features built in to prevent dangerous situations. High-limit sensors, or safety sensors, are one of the most important. Not only do they protect people, they help keep manufacturing lines running by limiting damage to equipment and product. Thermal loops consist of a heater, temperature sensor, and heater controller. The controller has a temperature setpoint, receives a signal from the temperature sensor, and modulates power to the heater to maintain the temperature setpoint.
E
If there is a failure in the primary thermal control loop, the redundant safety sensor can tell the controller to reduce power to the heater or shut down the entire system. The most common failures are physically damaged sensors, worn out components, and pinched wires.
In a non-industry application, a hot tub uses a high-limit sensor to prevent the water from getting too hot. If the primary control loop fails, the heater will continue to heat the water. When the water temperature reaches a certain level, usually between 110 and 120°F, the high-limit sensor disables the heater to keep the water at a safe, enjoyable temperature. To provide additional safety, when the high- limit sensor trips the system, users are “latched out” until the system is inspected and reset by an operator, system designer, or
manufacturing engineer. Once the system is repaired and reset, it will operate normally again. In the hot tub example, the high-limit sensor will likely disable the pump in addition to the heater. A technician may need to inspect the hot tub and replace the primary sensor — or other defective parts — before resetting the system. This safety latch is often achieved in industrial systems through a programmable temperature controller and mechanical relay.
High limit applications
The high limit sensor in these scenarios are often thermistors, resistive temperature detectors (RTDs), or thermocouples (TCs). The best type of high-limit sensor is application dependent. The controller is often programmable so the user can adjust the primary control loop and the safety control loop temperature setpoints.
For the safest operation, the safety sensor should be attached directly to or immediately adjacent to the heat source. The farther the safety sensor is from the heat source, the more likely unwanted damage will occur when the safety control loop is engaged. For this reason, Watlow offers many heating products with sensors already embedded in the heaters.
Multiple high-limit sensors are used on large heating systems. A very large
manufacturer if in doubt. Runaway thermal systems create risk of both fire and electrical shock.
Some systems involve a chemical reaction. Even after the heater is turned off, the chemical reaction may continue. If it becomes exothermic and continues to produce heat, shutting down the heaters will not stop the temperature from continuing to rise. In this example, the safety sensor could activate a fire suppression system.
A less accurate, lower cost method to provide safety could utilise a resettable thermostat or thermal fuse instead of a high-limit safety sensor. These devices are wired in series with the heater and create an open circuit when a manufacturer pre- defined temperature is exceeded. These alternatives can be good solutions in some applications, but nearly always have lower performance and are driven by cost. Watlow integrates all types of thermal safety sensors into its heaters: TCs, RTDs, thermistors, thermostats, and thermal fuses.
By using the most suitable high-limit safety sensor and following best practices, your system will have the best opportunity to prevent unforeseen accidents and damages.
Watlow
www.watlow.com
JUNE 2024 | PROCESS & CONTROL 31
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56