Technology 95%

The estimated percentage of hydrogen that is produced from coal and natural gas. Around 5% is generated as a by-product from chlorine production through electrolysis.

International Renewable Energy Agency

with a handful of natural gas utilities that want to decarbonise the natural gas grid,” says Harrison – a desire that isn’t just derived from a sense of civic duty to the environment. “They’re also getting pressure from investors, of course, that see the writing on the wall.”

Penny drops

Many companies have begun to act. In August 2020, Siemens Energy and China Power International announced a partnership to build a green hydrogen facility outside Beijing, powered by wind turbines in Inner Mongolia. In Australia, meanwhile, the Asian Renewable Energy Hub proposes to invest A$50bn to build 26GW of wind and solar capacity to power a green hydrogen export plant in Pilbara, Western Australia. The issue even cropped up during the US presidential election, with President Joe Biden including a commitment to starting a green hydrogen research programme in his Democrat Party platform. Most green hydrogen facilities remain on the drawing board or are too small to make a meaningful contribution toward global output of the gas (only 5% of it is manufactured via electrolysis, mostly as a by-product of chlorine production). Admittedly, H100 Fife will fall into the latter category when production is up and running in winter 2022. Nevertheless, its template is one that could be replicated with ease by energy companies up and down the UK coastline. According to a study by the London-based Centre for Policy Studies in June 2020, the country is ‘blessed’ with the ideal conditions for manufacturing green hydrogen at scale.

“Few other countries can rely on sites like the North Sea, which is not only very windy but is also relatively shallow,” the report continued. “This makes it easy to install the turbines that will eventually generate the electricity needed to electrolyse water into useful hydrogen.”

That means nothing, of course, if customers aren’t receptive to green hydrogen. As such, all household participation in H100 Fife will be voluntary. “You want to make sure it’s an opt-in opportunity, and that those that do opt in [are] not disadvantaged in any way,” explains McIntosh. Much of that effort is concentrated on convincing customers that green hydrogen is functionally identical to natural gas, something SGN intends to demonstrate by building a demonstration home in Levenmouth, complete with a working hydrogen-powered boiler and requisite shower, heater and oven. Those households that participate in H100 Fife will give SGN a crucial insight into how a green hydrogen network could potentially work. “There will be about 115-plus outcomes of the project,” says McIntosh, from how the ancillary supply equipment works to the reliability of the new network’s gas detection equipment. “It will give critical insight into hydrogen


as an option for [the] decarbonisation of heat, both in terms of the success of the project and the customer appetite and customer acceptance of it, whether or not it meets their wants and needs.”

The potential usefulness of green hydrogen doesn’t stop at greening energy networks. Should the price of wind and solar energy continue to fall and the efficiency of electrolysers improve over the next decade, there is reason to believe that the gas could play a crucial role in decarbonising other parts of the energy mix. According to Harrison, the increasing use of hydrogen fuel cells in material handling vehicles indicates a broader role for the gas in transportation. “Companies like Plug Power and others have found an economic, competitive market by powering forklifts with hydrogen fuel cells versus their all-battery [...] propane solutions.” After that, the next market for green hydrogen could well be light-duty vehicles. “You see UPS trucks and garbage trucks moving around with natural gas now, or compressed CNG,” says Harrison. “That could be hydrogen.”

What remains to emerge is any clarity on what all this might cost. According to the International Renewable Energy Agency, fully meeting demand for hydrogen in energy storage, transport and heating would require up to 158.3 million tonnes of the gas being produced a year, something that energy news site Recharge calculated would require 1,775GW worth of wind farms powering production. While the world currently produces roughly 120 million tonnes of mostly grey hydrogen per year, total wind energy capacity only stands at 564GW.

Even so, it is hard to imagine green hydrogen being excluded from any global transition towards renewable energy. This derives, in part, from its advantages as a storage medium. Hydrogen fuel cells are perfect for storing electricity for a rainy day, essential if the grid is reliant on fluctuating power sources like solar or wind energy. What’s more, capacity can be increased relatively cheaply by buying more storage tanks, as opposed to batteries, which need to be manufactured. It seems more realistic, then, to think of green hydrogen not as a panacea for the climate emergency, but just one of many weapons to use in our fight to reduce carbon emissions. It’s a fight Harrison is well- acquainted with, having spent much of his youth fighting in the US court system to get a wind turbine erected in his backyard against vehement local opposition. Today, he’s busy training the next generation of renewable energy engineers at NREL. “We don’t have a lot of time, in my opinion, to wait 50 years for the silver bullet that will solve all our problems,” says Harrison. “There is a sense of urgency to train these younger folks as engineers and scientists, so that they’re deploying this stuff we have in the lab tomorrow.” ●

World Wind Technology /

Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29