search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
t


NEUROLOGY


The impact of robotics on neurosurgery


Stuart Campbell, clinical sales development manager of the neurological products division, at Renishaw, discusses key trends in the use of robotics in neurosurgery.


The curious case of Phineas Gage is one of the earliest and most well known cases of serious brain injury. On 13 September 1848, Gage was working as a railway foreman in Vermont when an explosion caused a three foot long iron rod to be propelled straight through his skull. At the time, doctors thought it impossible to survive such an injury and his remarkable survival and reported personality changes affected the study of neuroscience forever. Robotics – a new technology that offers high precision access to a complex and sensitive region – is now changing the face of neuroscience.


Industrial environments are rife with automation and robotic systems. The upwards trend is only increasing, with the International Federation of Robotics predicting that by 2018, 1.3 million industrial robots will be entering service in factories across the globe. Automated or robotic systems can increase the speed, reliability and accuracy of industrial processes, but the benefits of robotics are not limited to industrial applications.


Applications in the operating theatre


The first application of a robotic system in surgery happened in 1985, 24 years after the introduction of Unimate, the first industrial robot. In this first robotic surgery, surgeons performed a neurosurgical biopsy using a PUMA 560 robotic arm. The robotic system allowed for greater precision in minimally invasive surgery compared to more traditional methods.


Despite the first application of a robot MARCH 2017


assisted procedure being in neurosurgery, robotic systems are not as widely used in this field compared to other areas of medicine such as urology, cardiology and gastroenterology. This is partly because of the anatomical challenges in such a complex and spatially limited organ, but also because of the fact that the brain includes incredibly sensitive tissue. Brain tissue may be difficult to access and manipulate, but it is also incredibly important. As a result, technological improvements to traditional methods have always been a focus to improve the precision of surgery and release the potential of the technology in this important area of the body. Advances in engineering and imaging techniques have sparked further interest in computer-assisted and robotic neurosurgery. The need for precision during brain


surgery has led to an increase in computer- assisted surgery (CAS). This technique involves using imaging technologies such as magnetic resonance imaging (MRI), computerised tomography (CT) or positron emission tomography (PET) to generate an image of the patient’s brain. The surgeon will use this information to plan the route of surgery.


CAS can accurately guide surgeons to


their surgical targets, therefore improving patient outcomes by limiting damage to adjacent tissue. CAS has been a key factor leading to robotic-assisted surgery, which enables the surgeon to use software to control and move surgical instruments mounted on a robot to perform surgery through small incisions.


Surgical robots


One definition of a surgical robot is any reprogrammable powered manipulator with artificial sensing. The most important factors to consider when classifying a surgical robot are in its surgical applications, its level of interaction with the surgeon and the role of the robot in the surgery. Robots range from being fully dependent, where the surgeon has full control of the system for the duration of the procedure, to autonomous, where the robot will reproduce pre-programmed motions or instructions during the surgery without the control of the surgeon. Currently, the most common systems in robotic surgery are dependent systems, where the surgeon retains full control of the surgical instruments. This type of surgery is also known as telesurgery. A popular example of a telesurgery robot is the da Vinci Surgical System, which enables surgeons to


WWW.CLINICALSERVICESJOURNAL.COM I 41


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72