search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
HAND-ARM VIBRATION A HELPING HAND


Understanding the level of exposure to hand-arm vibration (HAV) may require employers to take a range of different actions. This includes the observation of specific working practices, the on-tool measurement of the magnitude of the vibration to which employees may be exposed, or the application of the manufacturer’s vibration emissions data provided in the tool’s user manual.


ON-TOOL MEASUREMENT Measured vibration levels play a major role within a HAV


risk assessment, allowing the employer to understand the magnitude and extent to which their employees are exposed to vibration under the actual conditions of equipment use. On-tool measurements often provide more accurate data based on actual tool usage within a particular process, as the measurement relies on the operator to demonstrate typical tool usage under those process-specific conditions. This is opposed to the equipment’s vibration magnitude data issued by the manufacturer, which is based on specific circumstances of application under laboratory conditions.


While arguably more accurate, the data produced from an on-tool vibration assessment should still be treated with caution, should this data have been gathered in a situation not reasonably representative of typical exposure. On-tool measurements can be impacted by variable factors such as hand placement, tool age, maintenance date, the materials being worked on, application style, the type of tool head, accessories and power settings. It is therefore important to ensure that a competent person, such as a qualified occupational hygienist, is employed to conduct a vibration monitoring risk assessment, as they will be able to accurately gauge typical conditions and consider any variable factors.


MANUFACTURER’S DATA When carrying out a HAV risk assessment, employers


should still consider any relevant data provided by the equipment manufacturer, who is required to provide details on the residual risk. This is a statutory requirement and can serve a purpose in providing a ballpark figure of the tool’s vibration emission level. This data is instrumental during the tool purchasing stage, as by applying a ‘buy smooth’ policy, the employer can focus on buying low-vibration tools.


It is worth noting that the vibration emission level stated by the manufacturer usually represents the average amount of vibration generated from the main applications of the tool. Therefore, any usage outside of its usual applications may significantly increase the exposure level over the total working period. The HSE’s standpoint is that it may be reasonable to expect that the manufacturer’s data is representative of the range of exposure which may be experienced on site, and that this data may therefore be applied for the purposes of a


24


Mary Cameron, at SOCOTEC, discusses the role that measured vibration levels and manufacturer’s data plays when assessing HAV exposure.


preliminary assessment of exposure. This can be carried out instead of on-tool measurements in the event of a specialist not being readily available to attend site.


However, caution should be taken to assess how closely the conditions of on-site tool usage match the conditions of laboratory-based testing. HSE guidance also cautions that vibration test codes tend to underestimate the vibration of tools when used in the workplace (by a factor of 1.5 to 2 for pneumatic and electric tools).


WHICH DATA IS MORE EFFECTIVE? Although on-tool measurements can be argued to


provide more accurate readings of vibration exposure levels, the subsequent control measures applied would be the same if both these measurements and the manufacturer’s data were to produce the same general range of vibration magnitudes. As long as the employer has sourced the general range of the tool’s expected vibration magnitude in that process, both the manufacturer’s data and on-tool measurements can provide the information needed to sufficiently assess the level of risk and control measures required.


Both data sources have their limitations, and employers should therefore choose the most appropriate method for their situation and focus on understanding the level of risk through a soundly-based risk assessment. And thereafter monitoring the effectiveness of the implemented control measures by ensuring they are regularly reviewed.


“CAUTION SHOULD BE TAKEN TO ASSESS HOW CLOSELY THE CONDITIONS OF ON-SITE TOOL USAGE MATCH THE CONDITIONS OF LABORATORY- BASED TESTING.”


It is in my experience, however, that the manufacturer’s data can often underestimate the level of HAV exposure compared to the on-tool measurements obtained for that tool under actual/typical conditions of use. In some cases, the manufacturer’s data has been misunderstood and used as a means to ‘work up to the limit’, unwittingly causing exposure over the limit should the manufacturer’s data be under- representative. Therefore, although the manufacturer’s data serves a purpose (such as at tool purchasing stage or a preliminary risk assessment), an occupational hygienist may often be required to attend site to carry out on-tool measurements.


www.socotec.co.uk www.tomorrowshs.com


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46