Setting the standard for continuous emissions monitoring and reporting
ABB
The recent introduction of EN 17255 has provided a much- needed guarantee of uniformity for the performance of continuous emissions monitoring systems. Christoph Becker, Portfolio Manager for ABB Measurement & Analytics, explains more about the standard and why it marks an important development in reducing industrial emissions.
The growing realization of the need to tackle emissions of potentially harmful pollutants from industrial sources has seen an uptake in the adoption of Continuous Emissions Monitoring systems (CEMS) to help both monitor and control levels and ensure compliance with tightening legislation.
Continuous Emission Monitoring (CEM) is regulated in many regions of the world, with the aim of reducing the emission of pollutants that contribute to poor air quality and lead to signifi cant negative impacts on human health and the environment. For that purpose, reduction commitments have been agreed upon in many regions world-wide in the form of various directives and protocols.
Depending on legislation and the type of information companies require, many industries need to use CEM equipment to monitor their emissions, including power generation, waste incineration, oil and gas, chemicals and petrochemicals, pulp and paper, metals and minerals, landfi lls and biogas, marine and cement production.
Several countries are demanding that polluting facilities and plants install CEMS to meet strict new levels or monitor previously unaddressed pollutants. The Industrial Emission
2 8
Directive introduced in 2010, for example, places an emphasis on the use of Best Available Technologies (BAT) by companies throughout the EU as a way of reducing emissions of harmful substances to air, water and land that could affect human health and the environment.
Checking CEM accuracy
CEMS solutions are used to quantify levels of pollutants emitted to air. They can range from simple systems monitoring natural gas fi red boilers, measuring gases such as carbon monoxide, carbon dioxide and oxides of nitrogen, to more complex systems set up to monitor large waste incinerators.
In each case, it is important to know that the measurements being taken are correct and can be benchmarked against some form of meaningful standard to allow an accurate and effective comparison of performance against regulated requirements. For example, various standards issued by the International Standards Organization (ISO) and the European Committee for Standardization (CEN) describe performance criteria that must be met by Automated Measuring Systems (AMS) in order to meet maximum permissible measurement uncertainties as mandated in corresponding regulations.
AMS installed in the fi eld are connected to a data acquisition and handling system (DAHS), typically a computer-based system that acquires the measurements together with peripheral data and plant status information.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48