TECH SPOTLIGHT
Meet the Robot A-Team That Will Be Vital to the Future of Offshore Wind and Net Zero
One of the UK’s most ambitious robotics projects has proven the concept for robotic teams repairing offshore wind farms. This paves the way for human- robot teams at wind farms within 10 years and wind farms designed for robotic maintenance by 2050 – a scenario that will be vital to the UK achieving its net-zero targets.
The MIMRee project funded by Innovate UK, has concluded and reported on its drive to develop an autonomous robotic team for inspecting and repairing offshore wind farms. Two years since starting the project, the MIMRee team, including leading academics and technology developers, say they have successfully proven and demonstrated the core technologies at the heart of the concept.
Under the MIMRee scenario, a Thales autonomous mothership detects defects in wind farm blades using an onboard inspection system that can scan the structure of wind farms blades while they are still turning, sometimes at speeds of 200mph at their tips. The mothership then signals the blades to stop and launches a specially adapted drone that can transport a six-legged ‘blade crawler’ onto them to effect repair.
The Offshore Renewable Energy (ORE) Catapult led the project and believes that within 10 years this scenario will be feasible at offshore wind farms with robots working semi-autonomously (that is, under the remote supervision of humans and only requiring technicians for intervention offshore when essential).
By 2050, such a system could be capable of planning its own missions and conducting them autonomously at ‘wind farms of the future’ that are built for repair by resident robots. ORE Catapult estimates that this move
50
www.sosmagazine.biz August 2021
will shift workers from hazardous environments at sea to onshore control room roles and reduce the cost of energy by 10% (including a 27% reduction in operating expenses).
The inspiration for the project was drawn from space exploration, the epitome of an extreme environment. Professor Sara Bernardini developed the AI system that controls how the MIMRee robots work together and communicate with humans.
“Space provides a good example of humans working with robots. The current Mars exploration programme uses a team of robots, from helicopters to rovers, that can withstand extreme conditions. Astronauts are deployed selectively, where human ingenuity is most needed and risk to life is lowest. Likewise, future offshore work will be about humans being in the control room, developing and managing robotics and learning the skills required to work in teams with them.” comments Professor Bernardini.
Another crucial technological breakthrough was developing a robot’s ability to repair blades. The BladeBUG robot was lent to the project by BladeBUG Ltd, a London start-up that has previously achieved the world’s first robotic ‘blade walk’ at a working offshore wind turbine.
Wootzano Ltd fitted their patented electronic skin, used in harsh
The Thales moving-blade inspection system scans the blades at ORE
Catapult’s offshore Levenmouth Demonstration Turbine. Courtesy of Thales UK.
BladeBUG’s blade crawler climbs a blade at ORE Catapult's offshore Levenmouth Demonstration Turbine. Courtesy of BladeBUG Ltd/Tony Fong.
environments such as nuclear decommissioning and applied it to the feet of the crawler robot. The Wootzkin allows robots to navigate around slippery wind turbine blades monitoring for slips and avoiding falls whilst carrying out repairs.
The Royal College of Art’s Robotic Laboratory developed the repair module that is capable of cleaning and recoating damaged blades.
Drone technologies were adapted to take-off and land on the autonomous vessel when it is moving at high speed while it is carrying the blade crawler. This phase was led by the University of Bristol, University of Manchester and Perceptual Robotics.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52