This page contains a Flash digital edition of a book.
manufacturing technology


they’ve only got a tiny space to do it in. So this is driving the requirement to create tighter radii than we’ve done before. “Everything used to be bigger and there used to be fewer components to maneuver around. The industry is challeng- ing both us, the equipment supplier, and the raw material manufacturers to make a product that can be formed within these constraints.”


Tight Bends Require Precise Control Bending tube in a tight radius requires precise control of the material fl ow. That requires specialized tooling and multi- axis CNC, as opposed to the old technology of hydraulically controlled bending machines. Searles explains that the material on the outside of a bend “has to come from someplace. It either has to stretch, break, or pull from the end of the tube. Histori- cally, we’d allow the material to stretch, pulling material from the end of the part, and we’d often use heat to get the material to bend properly. We’d make single-bend parts, cut it off, and weld these segments together to create an assembly. As recently as fi ve years ago any fi nished tube with multiple bends would have included much more cutting and welding than needed today. “That’s because our electric machines now actually push material into the outside of the turn as the tube is bending.


The servo-controlled axis also maintains enough control to keep material from pushing on the inside of the bend, where it thickens and can cause problems like wrinkles. We can control the material fl ow so well that radii as tight as one times the diameter are doable.” But it’s a balancing act. BLM Group’s engineers have to determine the right amount of pushing required and the per- fect timing for applying the force. And they have to create a repeatable process that takes just a few seconds. With cycle times like that and full automation, these machines are push- ing out 20,000 or more fi nished tubes per day.


Cut to Length in Seconds In the vast majority of high production situations, cutting the tube to length precedes the bending operation. Searles said. “Typical cutting times are a second and a half to two seconds, depending on the material and the thickness of the wall. A three-inch tube with a quarter-inch wall might take three or four seconds.


Electric control of all axis movement, savvy programming, and specialized tooling


Electric control of all axis mo ement, savvy programming, and specialized tooling enables today’s machines to rapidly and reliably bend tubing with tight radii to satisfy space constraints.


“In the automotive world, walls are generally getting thinner to help make cars lighter. We can process these lighter tubes faster. On the other hand, the material selection plays a big role, and of course it depends on the application. For example, a structural component like tubing in the door for collision protection would likely be a thin wall tube, but a much harder material that we’d cut slower. If it’s an exhaust system it’s generally pretty soft steel, which we can cut pretty fast.” BLM Group uses either saws or lasers for the actual cutting, typically holding about 0.0050" (0.13 mm) for sawing and 0.0040" (0.1 mm) for laser cuts, both of which are perfectly ac- ceptable. The goal is to produce parts in very high volume that meet the accuracy requirement without expending unnec- essary resources. BLM Group’s CM602 automatic CNC sawing machine handles tube and bar up to 4" (102 mm) in di- ameter, and depending on the material, runs at up to 5000 rpm cutting speed. The cutting head meets the tube surface at 45° and its linear movement across


50 — Motorized Vehicle Manufacturing 2017


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176