This page contains a Flash digital edition of a book.
injecting EPS beads into a die and bond- ing them together using a heat source, usually steam. For shorter runs, pattern shapes are cut from sheets of EPS using conventional woodworking equipment and then assembled with glue. In either case, internal passageways in the casting, if needed, are not formed by conventional sand cores but are part of the mold itself. Te polystyrene pattern is coated with


This automated molding line is used to produce large nobake molds.


lowing positive features: • Te capability to use wood and, in some cases, plastic patterns and coreboxes.


• Good casting dimensional tolerances due to the rigidity of the mold.


• Good casting finishes. • Typically easy shakeout (the separa-


• Te abiliy to store cores and molds for long periods.


tion of the casting from the mold after solidification is complete).


Unbonded Sand Processes Unlike the casting processes that use


various binders to hold the sand grains together, two processes use unbonded sand as the molding media. Tese in- clude the lost foam process and the less


common V-process. Lost Foam Casting—In the lost foam


process, the pattern is made of expendable polystyrene (EPS) beads. For high-pro- duction runs, the patterns can be made by


a refractory coating, which covers both the external and internal surfaces. With the gating and risering system attached to the pattern, the assembly is suspended in a one-piece flask, which is placed onto a compaction or vibrating table. As the dry, unbonded sand is poured into the flask and pattern, the compaction and vibra- tory forces cause the sand to flow and densify. Te sand flows around the pattern and into the internal passageways. As the molten metal is poured into


the mold, it replaces the EPS pattern, which vaporizes. After the casting solidi- fies, the unbonded sand is dumped out of the flask, leaving the casting with an attached gating system. With larger castings, the coated pat-


tern is covered with a facing of chemi- cally bonded sand. Te facing sand is then backed up with more chemically bonded sand. Te lost foam process offers the fol-


lowing advantages: • No casting size limitations. • Improved casting surface finish. • No fins around coreprints or part- ing lines.


• In most cases, no separate cores are needed.


• Excellent dimensional tolerances. V-Process—In the V-process, the


cope and drag halves of the mold are formed separately by heating a thin plastic film to its deformation point. Te mold is then vacuum-formed over a pat- tern on a hollow carrier plate. Te process uses dry, free-flowing,


unbonded sand to fill the special flask set over the film-coated pattern. Slight vibration compacts the fine grain sand to its maximum bulk density. Ten the flask is covered with a second plastic sheet. Te vacuum is drawn on the flask, and the sand between the two sheets becomes rigid. Te cope and drag then are assembled


to form a plastic-lined mold cavity. Sand hardness is maintained by holding the vacuum within the mold halves. As molten metal is poured into the mold, the plastic film melts and is replaced by the metal. After the metal solidifies and cools, the vacuum is released and the sand falls away.


8 METAL CASTING DESIGN & PURCHASING 2016 CASTING SOURCE DIRECTORY


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172