happening in the laser and microprocessing world this year that is interesting, and people will be excited about many of the important topics at the LMF conference. We were easily able to fill our sessions with robust, high-quality talks with a global perspective. Most of the submissions (about one-third) were from Asia, then from Europe, then the USA.”
Stock says the highlight of the entire conference is in the smart gadget area where many companies are using laser processes to improve, miniaturize or work with new materials for smart phones and computers. Most of the smart gadget talks are in Sessions 4 and 5 on Tuesday.
Alan Conneely’s invited talk, Laser Micromachining of
Contactless RF Antenna Modules for Payment Cards and Wearable Objects, is the first in Session 5 (M501). “Cards and wearable objects for smart payments is something that consumers will really be excited about, and we haven’t seen many papers on the application space using lasers for processing RF antenna modules yet,” Stock says.
Biological applications are another highlight and a growth area for laser applications in general as well as in the LMF arena. There are two entire sessions on Microprocessing for Biological Applications. The invited paper, Control of Surface Profile in
The healthy trend of work on ultra-fast and ultra-short pulse lasers continues, and Stock says there is an explosion of interest in understanding them in microprocessing applications. The transparent material processing session, LMF Session 4, is heavily influenced by the types of lasers that are available today. There is also a new LMF session on microwelding of thin metals due to a high interest in batteries, an application space where lasers have made a lot of progress and are well understood as a tool. The talk Connecting Battery Cells by Aluminium Ribbon Bonding using Laser Micro Welding (M802) by Johanna Helm from Fraunhofer ILT is a great example of a session to attend.
Periodic
Nanostructures Produced with
Ultrashort Pulsed
Laser (M601) given by Togo Shinonaga from Japan’s Okayama University, discusses laser material processing and insight into controlling structures in titanium and other titanium alloys.
“These materials are interesting biomaterials because of their inactivity and lack of biofunction. Adding functions such as periodic nanostructures which can control cell spreading may help improve how well a body tolerates or integrates a metal implant such as a new joint. As manufacturers work to develop new and improved devices, the information provided in talks like this one will prove valuable additions to the body of knowledge,” says Stock.
Schematic showing how a card reader (left) inductively couples with a coil on module contactless payment card (right) through its secondary antenna module for power harvesting and communication from Alan Conneely’s upcoming ICALEO presentation
(Continued on page 8)
www.lia.org 1.800.34.LASER 7
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28