This page contains a Flash digital edition of a book.
Member Innovations


Modular Prototype Production with Lasers Enables Faster Gas Turbine Development The long lead time of turbine blades and vanes presents a big challenge to the validation of new part designs in engine tests. Conventional vane production through casting is unsuited for the fast iteration cycles required today in the development of hot path components. In a joint project, Siemens and the Fraunhofer Institute for Laser Technology ILT have now developed a faster production process based on selective laser melting (SLM). Components are manufactured in a modular way in the new process chain, resulting in additional benefits.


Last year, Siemens commissioned its Clean Energy Center, a new combustion test center in Ludwigsfelde near Berlin. The center plays a major role in developing and refining gas turbines as a facility for conducting realistic tests on various turbine components with liquid or gaseous fuels. Rigorously optimizing the combustion processes involved is the key to achieving greater energy efficiency in the turbines.


For more information, visit www.ilt.fraunhofer.de/en.


Sigma Laser Stent & Tube Cutter more Practical & Efficient Amada Miyachi America Inc., a leading manufacturer of laser welding, marking, cutting and micro machining equipment and systems, announces a comprehensive system wide upgrade to its Sigma Laser Stent and Tube Cutter, which can be configured with either microsecond fiber or femtosecond lasers. Featuring 3 or 4 axes of motion, wet and dry cutting, an automated tube loader option, and easy access to sub- assemblies, the updated system can cut stents and tubes with diameters from 0.2 to 25 mm. The operator-friendly control software features a 22 inch graphic user interface (GUI) on a swing arm.


The Sigma system has been designed for efficient production and practical


operation. New features include an open


architecture with excellent work space access and a sliding door which provides quick access for part unloading and set up changes. In addition,


all service components are now


on drawers that can be easily accessed. The system also features high precision high acceleration linear drive stages that optimize cycle time, a 2 inch Z axis and optional lineal stage cross axis for off-axis cutting, and a smart water supply system that controls and monitors flow. A single-screen operator interface facilitates ease of use with password- protected access levels.


For more information, visit www.amadamiyachi.com.


Members In Motion


IPG Photonics Appoints Catherine Lego to Board of Directors IPG Photonics Corporation announced that Catherine P. Lego has been appointed to its Board of Directors effective July 6, 2016. Lego is principal and founder of Lego Ventures, LLC, a California-based firm that provides consulting services to early-stage technology companies. The election of Ms. Lego, who will serve on the Company’s Audit Committee and Compensation Committee, expands the IPG board to 10 members.


Ms. Lego’s firm, Lego Ventures, which was founded in 1992, supports early stage technology companies with business plan development, obtaining seed and expansion financing, and counsel in the area of strategic growth through mergers or acquisitions. The firm’s clients have included Hybrid Networks, Opcode, Packeteer, Tripod, Dhaani Systems and Network Translations. From 1999 to 2009 Ms. Lego served as the general partner of The Photonics Fund, LLP, a venture capital investment firm focused on early stage investing in component, module and systems companies in the fiber optic telecommunications market. She served as the director of finance and investment analyst at Oak Investment Partners from 1981 to 1984, and as a general partner from 1985 to 1992.


For more information, visit www.ipgphotonics.com.


Special Breakthrough Prize for the Detection of Gravitational Waves In September last year, the LIGO Scientific Collaboration (LSC) researcher team had succeeded in experimentally recording the merger of two black holes for the first time. In February 2016, the evaluation was presented to the world press. Thus, the international LSC researcher team, including among many other institutions the Albert-Einstein- Institut (AEI) Hannover too, was able to prove one of the most important predictions of Albert Einstein’s theory of general relativity after 100 years.


Under the leadership of the Albert-Einstein-Institut (AEI), the LZH has been working on the development of the laser system for the gravitational wave detectors LIGO (Laser Interferometer Gravitational Wave Observatory) for more than ten years. The lasers in the LIGO detectors were jointly constructed and integrated into the US observatories as a ready-to-run-system by the LZH, AEI and neoLASE, an LZH spin-off company.


For more information, visit www.lzh.de/en.


www.lia.org


1.800.34.LASER


21


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28