ability, post-process ability as needed, and acceptable service properties.
Kirk Rodgers from GE Corporate discussed supply chain challenges, which include certain qualities AM lacks and specific issues that exist with design skill and rules. His presentation also touched on the needs of the processes, such as material standards, consistency, reliability and material delivery systems. He explained the importance of optimizing lasers for time by utilizing offline or automated loading and unloading, as well as offline or automated material recovery. While recognizing that machines have hardly changed in the last 20 years, Rodgers offered some solutions for issues he discussed, but also stated that some problems may be solved over time or through specific training.
Focusing on the continued benefits and success of additive manufacturing, RMIT University’s Milan Brandt presented AM research that is being conducted in Australia. Looking at current procedures for bone-specific implants, RMIT hopes to improve traditional implants by replacing them with a 3D object constructed from a CT scan. With this technology, RMIT believes mass customized vertebral implants could be created in order to help people with disk damage from accidents. Brandt explained that continued research and promising technology like this has ensured the growth of laser additive manufacturing in Australia.
Additive Manufacturing Across Industries Similar to previous years, numerous industries were represented at this year’s LAM Workshop. From laser 3D printing and oil and gas to the military and bio-medical, LAM once again showed that laser additive manufacturing plays a key role in a variety of industries.
During a session on selecting the correct additive process, the main focus centered on the aerospace industry. Brian Thompson from GKN Aerospace presented Additive Process Evaluation for Aerospace Applications, during which he reviewed the industry’s adoption of additive manufacturing, including what he considers today’s method – the net shape production of prismatic shapes – and next generation optimized structures, which he considers tomorrow’s method. Explaining that the aerospace industry has seen an increase in AM over the years, Thompson also
acknowledged the qualification barrier for certain materials and processes and discussed the use of powder bed methods for smaller parts and directed energy deposition for larger parts.
FIF YOU’RE USING LASERS
OR AM, YOU DON’T WANT TO MISS LAM.
Overall, the wide array of presentations provided attendees with an informative and helpful workshop. Alex Zappasodi from Polymet Corporation remarked, “[LAM is] a great show! Valuable information, great attendees, and meticulously organized.” James Tomic, a fourth-year attendee, agreed, saying, “If you’re using lasers for AM, you don’t want to miss LAM.”
In addition to the educational sessions that made up the majority of the event, attendees were also given the chance to network with key individuals in the industry during the Exhibitor Reception. This opportunity ensured that attendees not only received the chance to expand their knowledge of the latest advances in additive manufacturing at LAM, but were also encouraged to make connections with people who can help them make the most of the process.
“We’re looking forward to LAM 2017, when we return to Houston, TX,” said Denney. “While the Oil and Gas Industry is suffering from lower oil prices, we feel that there will still be a strong interest in laser cladding – a form of laser additive manufacturing – because it can lower production costs.”
Visit
www.lia.org/lam for updates on LAM 2017. (Images continued on page 20)
www.lia.org 1.800.34.LASER 19
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32