each of the major laboratory informatics tools, purchasing and implementation decisions require a thorough understanding of the laboratory’s functional requirements. However, it is more likely that the LES will be seen as complementary to ERP and QM systems where high-throughput QA is an essential step in a business process.
What is an electronic laboratory notebook (ELN)?
In its simplest form, an electronic laboratory notebook can be considered to be a direct replacement for the paper lab notebook. In this instance, it can provide the generic functionality (‘paper on glass’) to support scientific documentation for patent evidence, cross-discipline collaboration, and general record keeping. However, the integration capabilities raise the possibility of a tighter coupling of other laboratory systems into the ‘electronic laboratory notebook’. In other words, can the information that is currently printed from other laboratory systems, cut out and pasted into the paper lab notebook, be electronically entered or linked directly to
the electronic laboratory notebook? For example, systems that provide
chemical structure drawing, structure and sub-structure searching, and compound registration are an integral part of the chemistry laboratory’s process, and therefore would be expected to become part of an electronic solution. Similarly, other scientific disciplines will have specific requirements consistent with their particular laboratory processes. Figure 5 illustrates the relationship between ‘broad’ (generic) and ‘deep’ (specific) systems. In this context, the ‘notebook’ functionality (see Figure 1) is addressed by the ‘broad’ layer, whereas the discipline-specific functionality penetrates the ‘interpreted/processed data’ layer in Figure 1. From a patent perspective, the
‘experimental layer’ of Figure 1 is crucial as it captures what the scientist is thinking and doing, and therefore will provide the evidence of conception and reduction to practice of the ‘invention’. In broader intellectual property (IP) terms, it is the ‘experiment’ layer that constitutes a record of the laboratory’s work and as such contributes to the scientific knowledge repository. For
Fig. 5: Broad vs. deep
Broad functions Records, patents,
cross-discipline collaboration
as long as this repository resides on paper, the ability to access, collaborate and share scientific knowledge is constrained. Te implementation of an ELN therefore offers a significant opportunity to bring about greater efficiencies.
Let Your Data Live On
Exploit the Power of Live Data with ACD/Spectrus
Unify and structure analytical information Capture chemical context and retain analytical intelligence Make information accessible Apply knowledge in future decision-making
Learn More:
www.acdlabs.com/LetYourDataLiveOn
Chemists Biologists Analysts
Other discipline Other discipline
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44