This page contains a Flash digital edition of a book.
neers and component users fl exibility in their metal forming needs (Fig. 1). Each process off ers advantages when


T


matched with the proper alloy and application. When reviewing these pro- cesses and determining which best suits your needs, consider the following: • required surface quality; • required dimensional accuracy; • type of pattern/corebox equipment; • cost of making the mold(s); • how the selected casting process will aff ect casting design. Molding processes can be broken into


four general categories: • sand casting processes; • permanent mold processes; • ceramic processes; • rapid prototyping. Following is a look at the most com- mon casting processes.


SAND CASTING PROCESSES Fundamentally, a mold is produced


by shaping a refractory material to form a cavity of a desired shape such that molten metal can be poured into the cavity. T e mold cavity must retain its shape until the metal solidifi es and the casting is removed. Depending on the choice of metal, certain characteris- tics are demanded of the mold. When granular refractory materials, such as


Guide to Casting and Molding Processes


he versatility of metalcasting is demonstrated by the number of casting and molding processes currently available. T is range of choices off ers design engi-


In the nobake molding process, refractory sand is coated with binder and a liquid catalyst. As the binder and catalyst combine, a chemical reaction hardens the sand.


silica, olivine, chromite or zircon sands, are used, the mold must be: • strong enough to sustain the weight of the molten metal;


• constructed to permit any gases formed within the mold or mold cav- ity to escape into the air;


• resistant to the erosive action of molten metal during pouring and the high heat of the metal until the casting is solid;


• collapsible enough to permit the met- al to contract without undue restraint during solidifi cation;


• able to cleanly strip away from the casting after it has cooled;


• economical, since large amounts of refractory material are used.


Green Sand Molding


T e most common method used to make metal castings is green sand mold- ing. In this process, granular refractory sand is coated with a mixture of benton- ite clay, water and, in some cases, other additives. T e additives help to harden and hold the mold shape to withstand the pressures of the molten metal. T e green sand mixture is compacted


by hand or through mechanical force around a pattern to create a mold. T e me- chanical force can be induced by slinging, jolting, squeezing or impact/impulse. T e following points should be taken


into account when considering the green sand molding process: • for many metal applications, green sand processes are the most cost-eff ective of all metal forming operations;


• these processes readily lend themselves to automated systems for high-volume work, as well as short runs and proto- type work;


• in the case of slinging, manual jolt or squeeze molding to form the mold, wood or plastic pattern materials can be used, whereas high-pressure, high-density molding methods almost always require metal pattern equipment;


This automated molding line is used to produce large nobake molds.


• high-pressure, high-density molding normally produces a well-compacted mold, which yields better surface fi nish- es, casting dimensions and tolerances; • the properties of green sand are ad-


6 METAL CASTING DESIGN & PURCHASING 2014 CASTING SOURCE DIRECTORY


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172